Open Access

Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation

  • Authors:
    • Qiumin Xie
    • Qin Yi
    • Jing Zhu
    • Bin Tan
    • Han Xiang
    • Rui Wang
    • Huiwen Liu
    • Tangtian Chen
    • Hao Xu
  • View Affiliations

  • Published online on: January 16, 2025     https://doi.org/10.3892/ijmm.2025.5488
  • Article Number: 47
  • Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Sepsis is often a cause of mortality in patients admitted to the intensive care unit. Notably, the heart is the organ most susceptible to the impact of sepsis and this condition is referred to as sepsis‑induced cardiomyopathy (SIC). Low triiodothyronine (T3) syndrome frequently occurs in patients with sepsis, and the heart is one of the most important target organs for the action of T3. Phospholamban (PLN) is a key protein associated with Ca2+‑pump‑mediated cardiac diastolic function in the myocardium of mice with SIC, and PLN is negatively regulated by T3. The present study aimed to explore whether T3 can protect cardiac function during sepsis and to investigate the specific molecular mechanism underlying the regulation of PLN by T3. C57BL/6J mice and H9C2 cells were used to establish in vivo and in vitro models, respectively. Myocardial damage was detected via pathological tissue sections, a Cell Counting Kit-8 assay, an apoptosis assay and crystal violet staining. Intracellular calcium levels and reactive oxygen species were detected by Fluo‑4AM and DHE fluorescence. The protein and mRNA expression levels of JNK and c‑Jun were measured by western blotting and reverse transcription‑quantitative PCR to investigate the molecular mechanisms involved. Subsequently, 100 clinical patients were recruited to verify the clinical application value of PLN in SIC. The results revealed a significant negative correlation between PLN and T3 in the animal disease model. Furthermore, the expression levels of genes and proteins in the JNK/c‑Jun signaling pathway and PLN expression levels were decreased, whereas the expression levels of sarcoplasmic reticulum calcium ATPase were increased after T3 treatment. These results indicated that T3 alleviated myocardial injury in SIC by inhibiting PLN expression and its phosphorylation, which may be related to the JNK/c‑Jun signaling pathway. Accordingly, PLN may have clinical diagnostic value in patients with SIC.

Related Articles

Journal Cover

March-2025
Volume 55 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Xie Q, Yi Q, Zhu J, Tan B, Xiang H, Wang R, Liu H, Chen T and Xu H: Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation. Int J Mol Med 55: 47, 2025.
APA
Xie, Q., Yi, Q., Zhu, J., Tan, B., Xiang, H., Wang, R. ... Xu, H. (2025). Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation. International Journal of Molecular Medicine, 55, 47. https://doi.org/10.3892/ijmm.2025.5488
MLA
Xie, Q., Yi, Q., Zhu, J., Tan, B., Xiang, H., Wang, R., Liu, H., Chen, T., Xu, H."Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation". International Journal of Molecular Medicine 55.3 (2025): 47.
Chicago
Xie, Q., Yi, Q., Zhu, J., Tan, B., Xiang, H., Wang, R., Liu, H., Chen, T., Xu, H."Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation". International Journal of Molecular Medicine 55, no. 3 (2025): 47. https://doi.org/10.3892/ijmm.2025.5488