
The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review)
- Authors:
- Yongxin Chen
- Zhuanghui Wang
- Qinghong Ma
- Chao Sun
-
Affiliations: Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China, Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China - Published online on: February 11, 2025 https://doi.org/10.3892/ijmm.2025.5502
- Article Number: 61
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F and Lamas S: Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med. 222:85–105. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, El Sharkway R, Bayoumi A, Metwally M, Gloss BS, Brink R, Lu DB, Liddle C, Alqahtani SA, Yu J, et al: Inhibition of MERTK reduces organ fibrosis in mouse models of fibrotic disease. Sci Transl Med. 16:eadj01332024. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Kwan JYY, Yip K, Liu PP and Liu FF: Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 19:57–75. 2020. View Article : Google Scholar | |
Antar SA, Ashour NA, Marawan ME and Al-Karmalawy AA: Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int J Mol Sci. 24:40042023. View Article : Google Scholar : PubMed/NCBI | |
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI and Rubinsztein DC: Autophagy, aging, and age-related neurodegeneration. Neuron. 113:29–48. 2025. View Article : Google Scholar | |
Liang S, Wu YS, Li DY, Tang JX and Liu HF: Autophagy and renal fibrosis. Aging Dis. 13:712–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luo D, Lu X, Li H, Li Y, Wang Y, Jiang S, Li G, Xu Y, Wu K, Dou X, et al: The spermine oxidase/spermine axis coordinates ATG5-Mediated autophagy to orchestrate renal senescence and fibrosis. Adv Sci (Weinh). 11:e23069122024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wu X, Wang Y and Guo Y: Endoplasmic reticulum stress and autophagy are involved in adipocyte-induced fibrosis in hepatic stellate cells. Mol Cell Biochem. 476:2527–2538. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wen JH, Li DY, Liang S, Yang C, Tang JX and Liu HF: Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol. 13:9468322022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Tan J, Wang Y, Gong Y, Zhang X, Yuan Z, Lu X, Tang H, Zhang Z, Jiang X, et al: Atg5 deficiency in macrophages protects against kidney fibrosis via the CCR6-CCL20 axis. Cell Commun Signal. 22:2232024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ping Z, Gao H, Liu Z, Xv Q, Jiang X and Yu W: LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy. 20:1114–1133. 2024. View Article : Google Scholar : | |
Glick D, Barth S and Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto H and Matsui T: Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy. J Nippon Med Sch. 91:2–9. 2024. View Article : Google Scholar | |
Li WW, Li J and Bao JK: Microautophagy: Lesser-known self-eating. Cell Mol Life Sci. 69:1125–1136. 2012. View Article : Google Scholar | |
Xu Y, Qian C, Wang Q, Song L, He Z, Liu W and Wan W: Deacetylation of ATG7 drives the induction of macroautophagy and LC3-associated microautophagy. Autophagy. 20:1134–1146. 2024. View Article : Google Scholar : | |
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tukaj C: The significance of macroautophagy in health and disease. Folia Morphol (Warsz). 72:87–93. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nakahira K, Pabon Porras MA and Choi AM: Autophagy in pulmonary diseases. Am J Respir Crit Care Med. 194:1196–1207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zachari M and Ganley IG: The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61:585–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuma A, Mizushima N, Ishihara N and Ohsumi Y: Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 277:18619–18625. 2002. View Article : Google Scholar : PubMed/NCBI | |
Silva VR, Neves SP, Santos LS, Dias RB and Bezerra DP: Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers (Basel). 12:34612020. View Article : Google Scholar : PubMed/NCBI | |
Barth S, Glick D and Macleod KF: Autophagy: Assays and artifacts. J Pathol. 221:117–124. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pugsley HR: Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry. Methods. 112:147–156. 2017. View Article : Google Scholar | |
Agrotis A, Pengo N, Burden JJ and Ketteler R: Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy. 15:976–997. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saftig P, Beertsen W and Eskelinen EL: LAMP-2: A control step for phagosome and autophagosome maturation. Autophagy. 4:510–512. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G, Mariño G and Levine B: Autophagy and the integrated stress response. Mol Cell. 40:280–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gozuacik D and Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 23:2891–2906. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao XC, Livingston MJ, Liang XL and Dong Z: Cell apoptosis and autophagy in renal fibrosis. Adv Exp Med Biol. 1165:557–584. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim YC and Guan KL: mTOR: A pharmacologic target for autophagy regulation. J Clin Invest. 125:25–32. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Zhang H: Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 1206:67–83. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong CCL, Su H, Zhou T, Xia H and Liu W: mTORC1 Phosphorylates Acetyltransferase p300 to regulate autophagy and lipogenesis. Mol Cell. 68:323–335.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI and Tooze SA: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 55:238–252. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC and Ferguson SM: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 5:ra422012. View Article : Google Scholar : PubMed/NCBI | |
Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al: TFEB links autophagy to lysosomal biogenesis. Science. 332:1429–1433. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Wang H, Qu T, Luo J, An P, Ren F, Luo Y and Li Y: mTORC2: A multifaceted regulator of autophagy. Cell Commun Signal. 21:42023. View Article : Google Scholar : PubMed/NCBI | |
Herzig S and Shaw RJ: AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19:121–135. 2018. View Article : Google Scholar : | |
Tamargo-Gómez I and Mariño G: AMPK: Regulation of metabolic dynamics in the context of autophagy. Int J Mol Sci. 19:38122018. View Article : Google Scholar : PubMed/NCBI | |
Mihaylova MM and Shaw RJ: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Yu Z, Chen X, Li J, Li N, Cheng J, Gao N, Yuan HX, Ye D, Guan KL and Xu Y: Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun. 12:3392021. View Article : Google Scholar : PubMed/NCBI | |
Chang NC: Autophagy and stem cells: Self-eating for self-renewal. Front Cell Dev Biol. 8:1382020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li H, Yuan M, Fan H and Cai Z: Role of AMPK in autophagy. Front Physiol. 13:10155002022. View Article : Google Scholar : PubMed/NCBI | |
Alers S, Löffler AS, Wesselborg S and Stork B: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 32:2–11. 2012. View Article : Google Scholar : | |
Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A and Altucci L: Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 8:612016. View Article : Google Scholar : PubMed/NCBI | |
Begum MK, Konja D, Singh S, Chlopicki S and Wang Y: Endothelial SIRT1 as a target for the prevention of arterial aging: Promises and challenges. J Cardiovasc Pharmacol. 78(Suppl 6): S63–S77. 2021. View Article : Google Scholar : PubMed/NCBI | |
Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI and Hong Y: The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba. Parasit Vectors. 13:3682020. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Zhu C, Wang W, Li M, Ma C and Gao B: SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res. 199:1069572024. View Article : Google Scholar | |
Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW and Goodman RH: Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA. 104:829–833. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Gan D, Luo Z, Yang Q, An D, Zhang H, Hu Y, Ma Z, Zeng Q, Xu D and Ren H: α-Ketoglutarate improves cardiac insufficiency through NAD(+)-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol Med. 30:152024. View Article : Google Scholar | |
Gao Y, Kim K, Vitrac H, Salazar RL, Gould BD, Soedkamp D, Spivia W, Raedschelders K, Dinh AQ, Guzman AG, et al: Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG. Mol Metab. 86:1019692024. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Wang H, Li B, Liu J, Zhang X, Wang Y, Peng J, Gao L, Wang X, Hu S, et al: Inhibition of ACSS2 triggers glycolysis inhibition and nuclear translocation to activate SIRT1/ATG5/ATG2B deacetylation axis, promoting autophagy and reducing malignancy and chemoresistance in ovarian cancer. Metabolism. 162:1560412025. View Article : Google Scholar | |
Li X, Zhao C, Mao C, Sun G, Yang F, Wang L and Wang X: Oleic and linoleic acids promote chondrocyte apoptosis by inhibiting autophagy via downregulation of SIRT1/FOXO1 signaling. Biochim Biophys Acta Mol Basis Dis. 1870:1670902024. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Sun K, Gao T, Gao Y, Yang Y, Li Z and Zuo D: SIRT1 silencing promotes EMT and Crizotinib resistance by regulating autophagy through AMPK/mTOR/S6K signaling pathway in EML4-ALK L1196M and EML4-ALK G1202R mutant non-small cell lung cancer cells. Mol Carcinog. 63:2133–2144. 2024. View Article : Google Scholar : PubMed/NCBI | |
He C: Balancing nutrient and energy demand and supply via autophagy. Curr Biol. 32:R684–r696. 2022. View Article : Google Scholar : PubMed/NCBI | |
Baeken MW: Sirtuins and their influence on autophagy. J Cell Biochem. 125:e303772024. View Article : Google Scholar | |
Kim JY, Mondaca-Ruff D, Singh S and Wang Y: SIRT1 and autophagy: Implications in endocrine disorders. Front Endocrinol (Lausanne). 13:9309192022. View Article : Google Scholar : PubMed/NCBI | |
Ghosh HS, McBurney M and Robbins PD: SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 5:e91992010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Corradetti MN, Inoki K and Guan KL: TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 29:32–38. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A and Koya D: Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 120:1043–1055. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Jiang T, Wang Y and Guo L: The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Sci Rep. 9:184242019. View Article : Google Scholar : PubMed/NCBI | |
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J and Mazure NM: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 29:2570–2581. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bánréti A, Sass M and Graba Y: The emerging role of acetylation in the regulation of autophagy. Autophagy. 9:819–829. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW and Finkel T: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 105:3374–3379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J and Liu W: Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 57:456–466. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hyttinen JM, Niittykoski M, Salminen A and Kaarniranta K: Maturation of autophagosomes and endosomes: A key role for Rab7. Biochim Biophys Acta. 1833:503–510. 2013. View Article : Google Scholar | |
Lee J, Kim J, Lee JH, Choi YM, Choi H, Cho HD, Cha GH, Lee YH, Jo EK, Park BH and Yuk JM: SIRT1 promotes host protective immunity against toxoplasma gondii by controlling the FoxO-autophagy axis via the AMPK and PI3K/AKT signalling pathways. Int J Mol Sci. 23:135782022. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, Lu C, Nicastri M, Bretz C, Winkler JD, et al: SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 22:1170–1179. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Wang Y, Yao J, Mei L, Huang X, Kong H, Chen J, Chen X, Liu L, Wang Z, et al: ZDHHC7-mediated S-palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation. Autophagy. 20:2719–2737. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI | |
Valdor R and Macian F: Autophagy and the regulation of the immune response. Pharmacol Res. 66:475–483. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu YX, Han XS and Jing Q: Autophagy in Development and Differentiation. Adv Exp Med Biol. 1206:469–487. 2019. View Article : Google Scholar : PubMed/NCBI | |
Adelipour M, Saleth LR, Ghavami S, Alagarsamy KN, Dhingra S and Allameh A: The role of autophagy in the metabolism and differentiation of stem cells. Biochim Biophys Acta Mol Basis Dis. 1868:1664122022. View Article : Google Scholar : PubMed/NCBI | |
Pohl C and Dikic I: Cellular quality control by the ubiquitinproteasome system and autophagy. Science. 366:818–822. 2019. View Article : Google Scholar : PubMed/NCBI | |
Henderson NC, Rieder F and Wynn TA: Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Zhang H, Wang X and Liu X: Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J. 34:9854–9868. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA and Ramalingam TR: Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med. 18:1028–1040. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schuster R, Younesi F, Ezzo M and Hinz B: The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb Perspect Biol. 15:a0412312023. View Article : Google Scholar | |
Humphreys BD: Mechanisms of renal fibrosis. Annu Rev Physiol. 80:309–326. 2018. View Article : Google Scholar | |
Weiskirchen R, Weiskirchen S and Tacke F: Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 65:2–15. 2019. View Article : Google Scholar | |
Piersma B, Bank RA and Boersema M: Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med (Lausanne). 2:592015. | |
Burgy O and Königshoff M: The WNT signaling pathways in wound healing and fibrosis. Matrix Biol. 68-69:67–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
Noguchi S, Saito A and Nagase T: YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci. 19:36742018. View Article : Google Scholar : PubMed/NCBI | |
Habibie H, Adhyatmika A, Schaafsma D and Melgert BN: The role of osteoprotegerin (OPG) in fibrosis: Its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther. 228:1079412021. View Article : Google Scholar : PubMed/NCBI | |
Williams L, Layton T, Yang N, Feldmann M and Nanchahal J: Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J. 289:3603–3629. 2022. View Article : Google Scholar | |
Bai L, Li A, Gong C, Ning X and Wang Z: Protective effect of rutin against bleomycin induced lung fibrosis: Involvement of TGF-β1/α-SMA/Col I and III pathway. BioFactors. 46:637–644. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, et al: Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater. 190:579–592. 2024. View Article : Google Scholar : PubMed/NCBI | |
Biel C, Faber KN, Bank RA and Olinga P: Matrix metalloproteinases in intestinal fibrosis. J Crohns Colitis. 18:462–478. 2024. View Article : Google Scholar : | |
Liu H, Yan W, Ma C, Zhang K, Li K, Jin R, Xu H, Xu R, Tong J, Yang Z and Guo Y: Early detection of cardiac fibrosis in diabetic mice by targeting myocardiopathy and matrix metalloproteinase 2. Acta Biomater. 176:367–378. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Tian Y, Sun L, Zhou L, Xiao L, Tan RJ, Tian J, Fu H, Hou FF and Liu Y: Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis. J Am Soc Nephrol. 28:598–611. 2017. View Article : Google Scholar : | |
Patel V and Noureddine L: MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens. 21:410–416. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duan ZY, Bu R, Liang S, Chen XZ, Zhang C, Zhang QY, Li JJ, Chen XM and Cai GY: Urinary miR-185-5p is a biomarker of renal tubulointerstitial fibrosis in IgA nephropathy. Front Immunol. 15:13260262024. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Xue X, Cui Z, Kwame Amevor F, Wan Y, Fu K, Wang C, Peng C and Li Y: microRNAs-based diagnostic and therapeutic applications in liver fibrosis. Wiley Interdiscip Rev RNA. 14:e17732023. View Article : Google Scholar | |
Xuan Y, Wu D, Zhang Q, Yu Z, Yu J and Zhou D: Elevated ALT/AST ratio as a marker for NAFLD risk and severity: insights from a cross-sectional analysis in the United States. Front Endocrinol (Lausanne). 15:14575982024. View Article : Google Scholar : PubMed/NCBI | |
Amernia B, Moosavy SH, Banookh F and Zoghi G: FIB-4, APRI, and AST/ALT ratio compared to FibroScan for the assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease in Bandar Abbas, Iran. BMC Gastroenterol. 21:4532021. View Article : Google Scholar : PubMed/NCBI | |
Cylwik B, Bauer A, Gruszewska E, Gan K, Kazberuk M and Chrostek L: The diagnostic value of fibrotest and hepascore as non-invasive markers of liver fibrosis in primary sclerosing cholangitis (PSC). J Clin Med. 12:75522023. View Article : Google Scholar : PubMed/NCBI | |
Dzudzor B, Hammond H, Tachi K, Alisi A, Vento S, Gyasi RK and Aheto JMK: Serum 25-hydroxyvitamin D and hyaluronic acid levels as markers of fibrosis in patients with chronic liver disease at the main tertiary referral hospital in Ghana: A case-control study design. Health Sci Rep. 6:e11012023. View Article : Google Scholar : PubMed/NCBI | |
Soccio P, Moriondo G, d'Alessandro M, Scioscia G, Bergantini L, Gangi S, Tondo P, Foschino Barbaro MP, Cameli P, Bargagli E and Lacedonia D: Role of BAL and Serum Krebs von den Lungen-6 (KL-6) in patients with pulmonary fibrosis. Biomedicines. 12:2692024. View Article : Google Scholar : PubMed/NCBI | |
Jehn LB, Costabel U, Boerner E, Wälscher J, Theegarten D, Taube C and Bonella F: Serum KL-6 as a biomarker of progression at any time in fibrotic interstitial lung disease. J Clin Med. 12:11732023. View Article : Google Scholar : PubMed/NCBI | |
Chiba S, Ohta H, Abe K, Hisata S, Ohkouchi S, Hoshikawa Y, Kondo T and Ebina M: The diagnostic value of the interstitial biomarkers KL-6 and SP-D for the degree of fibrosis in combined pulmonary fibrosis and emphysema. Pulm Med. 2012:4929602012. View Article : Google Scholar : PubMed/NCBI | |
White ES, Xia M, Murray S, Dyal R, Flaherty CM, Flaherty KR, Moore BB, Cheng L, Doyle TJ, Villalba J, et al: Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 194:1242–1251. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ikeda K, Chiba H, Nishikiori H, Azuma A, Kondoh Y, Ogura T, Taguchi Y, Ebina M, Sakaguchi H, Miyazawa S, et al: Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: A post-hoc analysis of the phase 3 trial in Japan. Respir Res. 21:3162020. View Article : Google Scholar : PubMed/NCBI | |
Saito H, Tanaka T, Tanaka S, Higashijima Y, Yamaguchi J, Sugahara M, Ito M, Uchida L, Hasegawa S, Wakashima T, et al: Persistent expression of neutrophil gelatinase-associated lipocalin and M2 macrophage markers and chronic fibrosis after acute kidney injury. Physiol Rep. 6:e137072018. View Article : Google Scholar : PubMed/NCBI | |
Hijmans RS, Rasmussen DG, Yazdani S, Navis G, van Goor H, Karsdal MA, Genovese F and van den Born J: Urinary collagen degradation products as early markers of progressive renal fibrosis. J Transl Med. 15:632017. View Article : Google Scholar : PubMed/NCBI | |
Papasotiriou M, Genovese F, Klinkhammer BM, Kunter U, Nielsen SH, Karsdal MA, Floege J and Boor P: Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases. Nephrol Dial Transplant. 30:1112–1121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Karabinowska-Małocha A, Dziewięcka E, Szymańska M, Banyś P, Urbańczyk-Zawadzka M, Krupiński M, Mielnik M, Wiśniowska-Śmiałek S, Podolec P, Budkiewicz A, et al: Link between fibrosis-specific biomarkers and interstitial fibrosis in hypertrophic cardiomyopathy. Kardiol Pol. 81:692–699. 2023. View Article : Google Scholar | |
Scisciola L, Paolisso P, Belmonte M, Gallinoro E, Delrue L, Taktaz F, Fontanella RA, Degrieck I, Pesapane A, Casselman F, et al: Myocardial sodium-glucose cotransporter 2 expression and cardiac remodelling in patients with severe aortic stenosis: The BIO-AS study. Eur J Heart Fail. 26:471–482. 2024. View Article : Google Scholar : PubMed/NCBI | |
Al Ali L, Meijers WC, Beldhuis IE, Groot HE, Lipsic E, van Veldhuisen DJ, Voors AA, van der Horst ICC, de Boer RA and van der Harst P: Association of fibrotic markers with diastolic function after STEMI. Sci Rep. 14:191222024. View Article : Google Scholar : PubMed/NCBI | |
de Jong S, van Veen TA, de Bakker JM, Vos MA and van Rijen HV: Biomarkers of myocardial fibrosis. J Cardiovasc Pharmacol. 57:522–535. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Wang J, Cai X, Liou YC, Shen HM, Hao J, Huang C, Luo G and He W: Macrophage plasticity: Signaling pathways, tissue repair, and regeneration. MedComm (2020). 5:e6582024. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Zhao F, Cheng H, Su M and Wang Y: Macrophage polarization: An important role in inflammatory diseases. Front Immunol. 15:13529462024. View Article : Google Scholar : PubMed/NCBI | |
Ge Z, Chen Y, Ma L, Hu F and Xie L: Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol. 15:14449642024. View Article : Google Scholar : PubMed/NCBI | |
Stein M, Keshav S, Harris N and Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med. 176:287–292. 1992. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H and Li Y: Macrophage polarization and its role in liver disease. Front Immunol. 12:8030372021. View Article : Google Scholar : | |
Wu MY and Lu JH: Autophagy and macrophage functions: Inflammatory response and phagocytosis. Cells. 9:702019. View Article : Google Scholar | |
Rockey DC, Bell PD and Hill JA: Fibrosis-a common pathway to organ injury and failure. N Engl J Med. 372:1138–1149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y and Cui X: The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother. 171:1161162024. View Article : Google Scholar : PubMed/NCBI | |
Ogawa T, Shichino S, Ueha S and Matsushima K: Macrophages in lung fibrosis. Int Immunol. 33:665–671. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang WJ and Tang XX: Virus infection induced pulmonary fibrosis. J Transl Med. 19:4962021. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Lv J, Su Z, Wu T, Li X, Hu X, Zhang J and Wu L: LRRK2 plays essential roles in maintaining lung homeostasis and preventing the development of pulmonary fibrosis. Proc Natl Acad Sci USA. 118:e21066851182021. View Article : Google Scholar : PubMed/NCBI | |
Mornex JF, Cordier G and Revillard JP: Markers of lymphocyte activation in interstitial pulmonary disease. Rev Fr Mal Respir. 11:293–300. 1983.In Frence. | |
Du S, Li C, Lu Y, Lei X, Zhang Y, Li S, Liu F, Chen Y, Weng D and Chen J: Dioscin alleviates crystalline silica-induced pulmonary inflammation and fibrosis through promoting alveolar macrophage autophagy. Theranostics. 9:1878–1892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li C, Lu Y, Du S, Li S, Zhang Y, Liu F, Chen Y, Weng D and Chen J: Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice. Theranostics. 7:4255–4275. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Jin R, Luo R, Liu J, Ren L, Zhang Y, Shan Z and Peng X: Diosgenin targets CaMKK2 to alleviate type II diabetic nephropathy through improving autophagy, mitophagy and mitochondrial dynamics. Nutrients. 15:35542023. View Article : Google Scholar : PubMed/NCBI | |
Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F and Dong X: MicroRNA-205-5p targets E2F1 to promote autophagy and inhibit pulmonary fibrosis in silicosis through impairing SKP2-mediated Beclin1 ubiquitination. J Cell Mol Med. 25:9214–9227. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jessop F, Hamilton RF, Rhoderick JF, Shaw PK and Holian A: Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol Appl Pharmacol. 309:101–110. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan S and Chen S: Macrophage autophagy and silicosis: Current perspective and latest insights. Int J Mol Sci. 22:4532021. View Article : Google Scholar : PubMed/NCBI | |
Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka KE and Czaja MJ: Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 11:271–284. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Wang L, Liang P, Wang X, Liu Y, Cai J, She Y, Wang D, Wang Z, Guo Z, et al: USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell Mol Immunol. 18:2431–2442. 2021. View Article : Google Scholar : | |
Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK, Muthukumar T, Choi AM, Akchurin OM and Choi ME: Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight. 4:e1328262019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang C, Li L, Liang X, Cheng P, Li Q, Chang X, Wang K, Huang S, Li Y, et al: Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization. Cell Death Dis. 12:1092021. View Article : Google Scholar : PubMed/NCBI | |
Lodder J, Denaës T, Chobert MN, Wan J, El-Benna J, Pawlotsky JM, Lotersztajn S and Teixeira-Clerc F: Macrophage autophagy protects against liver fibrosis in mice. Autophagy. 11:1280–1292. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oakes SA and Papa FR: The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 10:173–194. 2015. View Article : Google Scholar | |
Senft D and Ronai ZA: UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 40:141–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H and Ren J: Endoplasmic reticulum stress in liver diseases. Hepatology. 77:619–639. 2023. View Article : Google Scholar | |
Malhi H and Kaufman RJ: Endoplasmic reticulum stress in liver disease. J Hepatol. 54:795–809. 2011. View Article : Google Scholar | |
Chen X, Shi C, He M, Xiong S and Xia X: Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 8:3522023. View Article : Google Scholar : PubMed/NCBI | |
Ernst R, Renne MF, Jain A and von der Malsburg A: Endoplasmic reticulum membrane homeostasis and the unfolded protein response. Cold Spring Harb Perspect Biol. 16:a0414002024. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Wang XZ, Wang T, Chen JJ, Xie XY, Hu H, Yu F, Liu HL, Jiang XY and Fan HD: Molecular signal networks and regulating mechanisms of the unfolded protein response. J Zhejiang Univ Sci B. 18:1–14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xia SW, Wang ZM, Sun SM, Su Y, Li ZH, Shao JJ, Tan SZ, Chen AP, Wang SJ, Zhang ZL, et al: Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res. 161:1052182020. View Article : Google Scholar : PubMed/NCBI | |
Benedetti R, Romeo MA, Arena A, Gilardini Montani MS, D'Orazi G and Cirone M: ATF6 supports lysosomal function in tumor cells to enable ER stress-activated macroautophagy and CMA: Impact on mutant TP53 expression. Autophagy. 20:1854–1867. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wei M, Zhou B, Wang K, Zhu E and Cheng Z: The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res. 55:1072024. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Jiang B and Zhao J: Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother. 170:1159842024. View Article : Google Scholar | |
Feng S, Ji J, Li H and Zhang X: H2S alleviates renal ischemia and reperfusion injury by suppressing ERS-induced autophagy. Transpl Immunol. 83:1020062024. View Article : Google Scholar | |
He L, Li H, Li C, Liu ZK, Lu M, Zhang RY, Wu D, Wei D, Shao J, Liu M, et al: HMMR alleviates endoplasmic reticulum stress by promoting autophagolysosomal activity during endoplasmic reticulum stress-driven hepatocellular carcinoma progression. Cancer Commun (Lond). 43:981–1002. 2023. View Article : Google Scholar : PubMed/NCBI | |
Habshi T, Shelke V, Kale A, Anders HJ and Gaikwad AB: Role of endoplasmic reticulum stress and autophagy in the transition from acute kidney injury to chronic kidney disease. J Cell Physiol. 238:82–93. 2023. View Article : Google Scholar | |
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD and Duan C: Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. Biochim Biophys Acta Mol Cell Res. 1872:1198692025. View Article : Google Scholar | |
Baek AR, Hong J, Song KS, Jang AS, Kim DJ, Chin SS and Park SW: Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med. 52:2034–2045. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Liu Y and Fu Z: Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol. 15:14138532024. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Liu Z, Chen S, Qiu J, Li Q, Wang S, Zhou W, Chen D, Yang G and Guo L: Transcription factor EB-mediated autophagy promotes dermal fibroblast differentiation and collagen production by regulating endoplasmic reticulum stress and autophagy-dependent secretion. Int J Mol Med. 47:547–560. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Zhao Y, Hu T, Long Y, Zeng Y, Li M, Peng S, Hu J and Shen Y: Endoplasmic reticulum stress is upregulated in inflammatory bowel disease and contributed TLR2 pathway-mediated inflammatory response. Immunopharmacol Immunotoxicol. 46:192–198. 2024. View Article : Google Scholar | |
Shi Y, Gao Z, Xu B, Mao J, Wang Y, Liu Z and Wang J: Protective effect of naringenin on cadmium chloride-induced renal injury via alleviating oxidative stress, endoplasmic reticulum stress, and autophagy in chickens. Front Pharmacol. 15:14408772024. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Chen Y, Lu B and Sun X, Zhu H and Sun X: Autophagy activated via GRP78 to alleviate endoplasmic reticulum stress for cell survival in blue light-mediated damage of A2E-laden RPEs. BMC Ophthalmol. 19:2492019. View Article : Google Scholar : PubMed/NCBI | |
Shu S, Wang H, Zhu J, Liu Z, Yang D, Wu W, Cai J, Chen A, Tang C and Dong Z: Reciprocal regulation between ER stress and autophagy in renal tubular fibrosis and apoptosis. Cell Death Dis. 12:10162021. View Article : Google Scholar : PubMed/NCBI | |
Xiong X, Zhang X, Zhang Y, Xie J, Bian Y, Yin Q, Tong R, Yu D and Pan L: Sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA)-mediated ER stress crosstalk with autophagy is involved in tris(2-chloroethyl) phosphate stress-induced cardiac fibrosis. J Inorg Biochem. 236:1119722022. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Cui Q, Zhang J, Liu W, Xu M, Lv Y, Wu Z, Zhang Y and Wu R: Milk fat globule-egf factor 8 alleviates pancreatic fibrosis by inhibiting ER stress-induced chaperone-mediated autophagy in mice. Front Pharmacol. 12:7072592021. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Zhang D, Su L, Wen Y and Wang Y: FAM172A supervises ER (endoplasmic reticulum) stress-triggered autophagy in the epidural fibrosis process. JOR Spine. 5:e12032022. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Bhatt KS, Nguyen HC, Frisbee JC and Singh KK: Endothelial-to-mesenchymal transition in cardiovascular pathophysiology. Int J Mol Sci. 25:61802024. View Article : Google Scholar : PubMed/NCBI | |
Jimenez SA and Piera-Velazquez S: Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of Systemic Sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol. 51:26–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Piera-Velazquez S, Li Z and Jimenez SA: Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J and Chen H: Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol. 155:1073682024. View Article : Google Scholar : PubMed/NCBI | |
Jackson AO, Zhang J, Jiang Z and Yin K: Endothelial-to-mesenchymal transition: A novel therapeutic target for cardiovascular diseases. Trends Cardiovasc Med. 27:383–393. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Gong J, Dennery PA and Yao H: Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases. Biochem Pharmacol. 168:100–107. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bischoff J: Endothelial-to-mesenchymal transition. Circ Res. 124:1163–1165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, Wei L, Wu H, Liang B, Li H, et al: Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis. 12:4702021. View Article : Google Scholar : PubMed/NCBI | |
Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF, Wang CQ and Gu J: Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol. 46:1021202021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Wang H, Zhang X, Song M, Yao S, Jiang P, Liu D, Wang Z, Lv H, Li R, et al: Defective autophagy contributes to endometrial epithelial-mesenchymal transition in intrauterine adhesions. Autophagy. 18:2427–2442. 2022. View Article : Google Scholar : PubMed/NCBI | |
Singh KK, Lovren F, Pan Y, Quan A, Ramadan A, Matkar PN, Ehsan M, Sandhu P, Mantella LE, Gupta N, et al: The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem. 290:2547–2559. 2015. View Article : Google Scholar : | |
Livingston MJ, Shu S, Fan Y, Li Z, Jiao Q, Yin XM, Venkatachalam MA and Dong Z: Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy. 19:256–277. 2023. View Article : Google Scholar : | |
Nam SA, Kim WY, Kim JW, Park SH, Kim HL, Lee MS, Komatsu M, Ha H, Lim JH, Park CW, et al: Autophagy attenuates tubulointerstital fibrosis through regulating transforming growth factor-β and NLRP3 inflammasome signaling pathway. Cell Death Dis. 10:782019. View Article : Google Scholar | |
Liu X, Tan S, Liu H, Jiang J, Wang X, Li L and Wu B: Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis. Hepatology. 77:1181–1197. 2023. View Article : Google Scholar | |
Li S, Liu G, Gu M, Li Y, Li Y, Ji Z, Li K and Wang Y, Zhai H and Wang Y: A novel therapeutic approach for IPF: Based on the 'Autophagy-Apoptosis' balance regulation of Zukamu Granules in alveolar macrophages. J Ethnopharmacol. 297:1155682022. View Article : Google Scholar | |
Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, et al: HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun. 14:42972023. View Article : Google Scholar : PubMed/NCBI | |
Liu XY, Zhang W, Ma BF, Sun MM and Shang QH: Advances in research on the effectiveness and mechanism of active ingredients from traditional Chinese medicine in regulating hepatic stellate cells autophagy against hepatic fibrosis. Drug Des Devel Ther. 18:2715–2727. 2024. View Article : Google Scholar : PubMed/NCBI |