
Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review)
- Authors:
- Shanshan Wang
- Hongyan Zheng
- Jianping Zhao
- Jungang Xie
-
Affiliations: Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: March 4, 2025 https://doi.org/10.3892/ijmm.2025.5512
- Article Number: 71
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Faubert B, Solmonson A and DeBerardinis RJ: Metabolic reprogramming and cancer progression. Science. 368:eaaw54732020. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wei W, Huang Y, Fu P, Zhang L and Zhao Y: Metabolic reprogramming in septic acute kidney injury: Pathogenesis and therapeutic implications. Metabolism. 158:1559742024. View Article : Google Scholar : PubMed/NCBI | |
Certo M, Tsai CH, Pucino V, Ho PC and Mauro C: Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021. View Article : Google Scholar | |
Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X and Jia R: Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 22:852021. View Article : Google Scholar | |
Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M, Li Y, Luo D, Wu K, Xu Y, et al: The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int. 106:226–240. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 131:893–908. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, Matthews QL, Liu RM and Liu G: Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol. 64:115–125. 2021. View Article : Google Scholar : | |
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH and Haigis MC: The aging lung: Physiology, disease, and immunity. Cell. 184:1990–2019. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bueno M, Calyeca J, Rojas M and Mora AL: Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol. 33:1015092020. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Li J, Zhang J, Feng W, Lu J, Ma X, Ding W, Ouyang S, Lu J, Yue P, et al: Metabolic reprogramming driven by IGF2BP3 promotes acquired resistance to EGFR inhibitors in non-small cell lung cancer. Cancer Res. 83:2187–2207. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Jiang H, Ma L, Zhao G, Xu Q, Guo D, He N, Liu H, Meng Z, Liu J, et al: The moonlighting function of glycolytic enzyme enolase-1 promotes choline phospholipid metabolism and tumor cell proliferation. Proc Natl Acad Sci USA. 120:e22094351202023. View Article : Google Scholar : PubMed/NCBI | |
He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X, Miao J, Zhang K, Zhang W, Ma P, et al: Numb/Parkin-directed mitochondrial fitness governs cancer cell fate via metabolic regulation of histone lactylation. Cell Rep. 42:1120332023. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Zhang N and Liang W: Systematic analysis of lysine lactylation in the plant fungal pathogen botrytis cinerea. Front Microbiol. 11:5947432020. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Baine JM, Yan T and Wang S: Comprehensive analysis of lysine lactylation in rice (Oryza sativa) grains. J Agric Food Chem. 69:8287–8297. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Liu L, Pan J, Luo B, Zeng H, Shao Y, Zhang H, Guan H, Guo D, Zeng C, et al: MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-κB pathway. Cell Death Dis. 12:5332021. View Article : Google Scholar | |
Yang Q, Liu J, Wang Y, Zhao W, Wang W, Cui J, Yang J, Yue Y, Zhang S, Chu M, et al: A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem. 298:1014562022. View Article : Google Scholar | |
Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang YH, Wang QC, Kong J, Yang JT and Liu JF: Global profiling of lysine lactylation in human lungs. Proteomics. 23:e22004372023. View Article : Google Scholar : PubMed/NCBI | |
Neganova ME, Klochkov SG, Aleksandrova YR and Aliev G: Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol. 83:452–471. 2022. View Article : Google Scholar | |
Park J, Lee K, Kim K and Yi SJ: The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct Target Ther. 7:2172022. View Article : Google Scholar : PubMed/NCBI | |
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D and Garg M: Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 8:3752023. View Article : Google Scholar : PubMed/NCBI | |
Lavoie H, Gagnon J and Therrien M: ERK signalling: A master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 21:607–632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Hou W, Zhao Q, Han W, Cui H, Xiao S, Zhu L, Qu J, Liu X, Cong W, et al: Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. Natl Sci Rev. 11:nwad2952023. View Article : Google Scholar | |
Pandkar MR, Sinha S, Samaiya A and Shukla S: Oncometabolite lactate enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression. Transl Oncol. 37:1017582023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ying T, Yuan J, Wang Y, Su X, Chen S, Zhao Y, Zhao Y, Sheng J, Teng L, et al: BRAFV600E restructures cellular lactylation to promote anaplastic thyroid cancer proliferation. Endocr Relat Cancer. 30:e2203442023. View Article : Google Scholar : PubMed/NCBI | |
Nian F, Qian Y, Xu F, Yang M, Wang H and Zhang Z: LDHA promotes osteoblast differentiation through histone lactylation. Biochem Biophys Res Commun. 615:31–35. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fanzani A, Giuliani R, Colombo F, Zizioli D, Presta M, Preti A and Marchesini S: Overexpression of cytosolic sialidase Neu2 induces myoblast differentiation in C2C12 cells. FEBS Lett. 547:183–188. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H and Shen M: Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle. 14:2851–2865. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Li Z, Meng X, Wang X, Song D, Liu Y, Xu T, Qin J, Sun N, Tian K, et al: Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway. Cancer Lett. 579:2164672023. View Article : Google Scholar : PubMed/NCBI | |
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF and Chiu HC: Nanomedicines targeting glioma stem cells. ACS Appl Mater Interfaces. 15:158–181. 2023. View Article : Google Scholar | |
Dou X, Fu Q, Long Q, Liu S, Zou Y, Fu D, Xu Q, Jiang Z, Ren X, Zhang G, et al: PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy. Nat Metab. 5:1887–1910. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wiley CD and Campisi J: From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab. 23:1013–1021. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Yang X, Wang J, Wang Z, Wang Q, Ding Y and Yu A: H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway. J Neuroinflammation. 20:2082023. View Article : Google Scholar | |
Jiang X, Yang Y, Li X, Li T, Yu T and Fu X: Lactylation: An innovative approach to disease control. Aging Dis. Sep 6–2024.Epub ahead of print. | |
Li X, Chen M, Chen X, He X, Li X, Wei H, Tan Y, Min J, Azam T, Xue M, et al: TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation. Eur Heart J. 45:4219–4235. 2024. View Article : Google Scholar : PubMed/NCBI | |
Greene JT, Brian BF IV, Senevirathne SE and Freedman TS: Regulation of myeloid-cell activation. Curr Opin Immunol. 73:34–42. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC and Schultze JL: The myeloid cell compartment-cell by cell. Annu Rev Immunol. 37:269–293. 2019. View Article : Google Scholar : PubMed/NCBI | |
De Leo A, Ugolini A, Yu X, Scirocchi F, Scocozza D, Peixoto B, Pace A, D'Angelo L, Liu JKC, Etame AB, et al: Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity. 57:1105–1123.e8. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ma XM, Geng K, Wang P, Jiang Z, Law BYK and Xu Y: MCT4-dependent lactate transport: A novel mechanism for cardiac energy metabolism injury and inflammation in type 2 diabetes mellitus. Cardiovasc Diabetol. 23:962024. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Ao S, Zhou J, Li J, Liang X, Yang X, Zhang H, Liu B, Tang W, Liu H, et al: Methylsulfonylmethane protects against lethal dose MRSA-induced sepsis through promoting M2 macrophage polarization. Mol Immunol. 146:69–77. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kolaczkowska E and Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Xu W, Wu Y, Wang M, Zhang N, Wang L, Feng Y, Zhang T, Wang L and Mao A: GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway. Oncogene. 42:3319–3330. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tong H, Jiang Z, Song L, Tan K, Yin X, He C, Huang J, Li X, Jing X, Yun H, et al: Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab. 36:2493–2510.e9. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang ZW, Zhang XN, Zhang L, Liu LL, Zhang JW, Sun YX, Xu JQ, Liu Q and Long ZJ: STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduct Target Ther. 8:3912023. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S, Tan H, Cai L, Zhang S, Qi X, et al: Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res. 42:2532023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Jiang J, Zhou P, Deng K, Liu Z, Yang M, Yang X, Li J, Li R and Xia J: H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis. Biochem Pharmacol. 222:1161202024. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar | |
Li HS, Zhou YN, Li L, Li SF, Long D, Chen XL, Zhang JB, Feng L and Li YP: HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol. 25:1011092019. View Article : Google Scholar | |
Zhao Y, Xing C, Deng Y, Ye C and Peng H: HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis. 11:234–251. 2023. View Article : Google Scholar : | |
Zhao W, Wang Y, Liu J, Yang Q, Zhang S, Hu X, Shi Z, Zhang Z, Tian J, Chu D and An L: Progesterone activates the histone lactylation-Hif1α-glycolysis feedback loop to promote decidualization. Endocrinology. 165:bqad1692023. View Article : Google Scholar | |
Wei S, Zhang J, Zhao R, Shi R, An L, Yu Z, Zhang Q, Zhang J, Yao Y, Li H and Wang H: Histone lactylation promotes malignant progression by facilitating USP39 expression to target PI3K/AKT/HIF-1α signal pathway in endometrial carcinoma. Cell Death Discov. 10:1212024. View Article : Google Scholar | |
Yang J, Luo L, Zhao C, Li X, Wang Z, Zeng Z, Yang X, Zheng X, Jie H, Kang L, et al: A Positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int J Biol Sci. 18:3470–3483. 2022. View Article : Google Scholar : | |
Chen J, Zhang M, Liu Y, Zhao S, Wang Y, Wang M, Niu W, Jin F and Li Z: Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension. J Mol Cell Biol. 14:mjac0732023. View Article : Google Scholar : | |
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cheng Z, Huang H, Li M and Chen Y: Proteomic analysis identifies PFKP lactylation in SW480 colon cancer cells. iScience. 27:1086452023. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Zhang Y, Sun H, Yang X, Hao S, Liu B, Zhou H, Wang Y and Xu ZX: Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. Redox Biol. 71:1031082024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X, Zhang X and Liu Y: Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 18:6210–6225. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong W, Feng J, Li X, Zhan R, Mo K, et al: ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv. 9:eadg49932023. View Article : Google Scholar : PubMed/NCBI | |
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, et al: KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 121:e23141281212024. View Article : Google Scholar : PubMed/NCBI | |
Cheng S, Chen L, Ying J, Wang Y, Jiang W, Zhang Q, Zhang H, Wang J, Wang C, Wu H, et al: 20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3. J Ginseng Res. 48:298–309. 2024. View Article : Google Scholar : PubMed/NCBI | |
Narita T, Weinert BT and Choudhary C: Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 20:156–174. 2019. View Article : Google Scholar | |
Wang S, Osgood AO and Chatterjee A: Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol. 74:1023522022. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhang F, Wang H, Tong Y, Fu Y, Wu K, Li J, Wang C, Wang Z, Jia Y, et al: NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci. 20:1413–1435. 2024. View Article : Google Scholar : PubMed/NCBI | |
An S, Yao Y, Hu H, Wu J, Li J, Li L, Wu J, Sun M, Deng Z, Zhang Y, et al: PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis. 14:4572023. View Article : Google Scholar : PubMed/NCBI | |
Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B and Zhou F: Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 187:2375–2392.e33. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, He S, Li W, Tan J, Lu Q and Hou S: YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 24:872023. View Article : Google Scholar : PubMed/NCBI | |
Liao J, Chen Z, Chang R, Yuan T, Li G, Zhu C, Wen J, Wei Y, Huang Z, Ding Z, et al: CENPA functions as a transcriptional regulator to promote hepatocellular carcinoma progression via cooperating with YY1. Int J Biol Sci. 19:5218–5232. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen L, Zhang M, Li X, Yang X, Huang T, Ban Y, Li Y, Li Q, Zheng Y, et al: Exercise-induced endothelial Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway. Atherosclerosis. 375:45–58. 2023. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Sun H, Zhang Y, Yang X, Hao S, Liu B, Zhou H, Xu ZX and Wang Y: Lactylation stabilizes DCBLD1 activating the pentose phosphate pathway to promote cervical cancer progression. J Exp Clin Cancer Res. 43:362024. View Article : Google Scholar : PubMed/NCBI | |
Wu Y and Gong P: Scopolamine regulates the osteogenic differentiation of human periodontal ligament stem cells through lactylation modification of RUNX2 protein. Pharmacol Res Perspect. 12:e11692024. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Zheng Y and Gao Q: Lysine lactylation in the regulation of tumor biology. Trends Endocrinol Metab. 35:720–731. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shvedunova M and Akhtar A: Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
Niu Z, Chen C, Wang S, Lu C, Wu Z, Wang A, Mo J, Zhang J, Han Y, Yuan Y, et al: HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription. Nat Commun. 15:35612024. View Article : Google Scholar : PubMed/NCBI | |
Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T and Wei R: Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 23:902024. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, et al: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 8:eabi66962022. View Article : Google Scholar : PubMed/NCBI | |
Dai SK, Liu PP, Li X, Jiao LF, Teng ZQ and Liu CM: Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development. 149:dev2000492022. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Huang X, Yang Y, Sun Y, Zhao Y, Zhang Z, Qiu D, Wu Y, Wu G and Lei L: Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader. Nucleic Acids Res. 52:5529–5548. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Niu K, Wang J, Shen W, Jiang R, Liu L, Song W, Wang X, Zhang X, Zhang R, et al: Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J Hepatol. 81:651–666. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Wang S, Xia H, Zhao X, Chen K, Jin G, Zhou S, Lu Z, Chen T, Yu H, et al: Lactate enhances NMNAT1 lactylation to sustain nuclear NAD+ salvage pathway and promote survival of pancreatic adenocarcinoma cells under glucose-deprived conditions. Cancer Lett. 588:2168062024. View Article : Google Scholar | |
Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL and Li C: Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 9:eadc94652023. View Article : Google Scholar : PubMed/NCBI | |
Wang YH, Gao P, Wang YQ, Xu LZ, Zeng KW and Tu PF: Small-molecule targeting PKM2 provides a molecular basis of lactylation-dependent fibroblast-like synoviocytes proliferation inhibition against rheumatoid arthritis. Eur J Pharmacol. 972:1765512024. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Zhang J, Zhou Q, He X, Zheng Z, Wei Y, Zhou K, Lin Y, Yu H, Zhang H, et al: Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res. 34:13–30. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar | |
Jin J, Bai L, Wang D, Ding W, Cao Z, Yan P, Li Y, Xi L, Wang Y, Zheng X, et al: SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 24:e560522023. View Article : Google Scholar : PubMed/NCBI | |
Zhang XW, Li L, Liao M, Liu D, Rehman A, Liu Y, Liu ZP, Tu PF and Zeng KW: Thermal proteome profiling strategy identifies CNPY3 as a cellular target of gambogic acid for inducing prostate cancer pyroptosis. J Med Chem. 67:10005–10011. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Zhang Y, Xu J, Wang P, Wu B, Lu S, Lu X, You S, Huang X, Li M, et al: α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 33:679–698. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li MY, Liu LZ and Dong M: Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer. 20:222021. View Article : Google Scholar : PubMed/NCBI | |
Thai AA, Solomon BJ, Sequist LV, Gainor JF and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Huang D, Jiang Y, Hou J, Tian M, Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Front Oncol. 11:6475592021. View Article : Google Scholar : PubMed/NCBI | |
Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F and He X: Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol Ther. 25:23041612024. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar | |
Ruprecht JJ and Kunji ERS: Structural mechanism of transport of mitochondrial carriers. Annu Rev Biochem. 90:535–558. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W and Wei S: Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int. 23:2222023. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Morgensztern D and Boshoff C: The biology and management of non-small cell lung cancer. Nature. 553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hao B, Dong H, Xiong R, Song C, Xu C, Li N and Geng Q: Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med. 171:1081832024. View Article : Google Scholar : PubMed/NCBI | |
Steeg PS, Camphausen KA and Smith QR: Brain metastases as preventive and therapeutic targets. Nat Rev Cancer. 11:352–363. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, et al: AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 91:195–208. 2019. View Article : Google Scholar : PubMed/NCBI | |
Duan W, Liu W, Xia S, Zhou Y, Tang M, Xu M, Lin M, Li X and Wang Q: Warburg effect enhanced by AKR1B10 promotes acquired resistance to pemetrexed in lung cancer-derived brain metastasis. J Transl Med. 21:5472023. View Article : Google Scholar : PubMed/NCBI | |
Feller-Kopman D and Light R: Pleural disease. N Engl J Med. 378:740–751. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morgensztern D, Waqar S, Subramanian J, Trinkaus K and Govindan R: Prognostic impact of malignant pleural effusion at presentation in patients with metastatic non-small-cell lung cancer. J Thorac Oncol. 7:1485–1489. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zamboni MM, da Silva CT Jr, Baretta R, Cunha ET and Cardoso GP: Important prognostic factors for survival in patients with malignant pleural effusion. BMC Pulm Med. 15:292015. View Article : Google Scholar : PubMed/NCBI | |
Wang ZH, Peng WB, Zhang P, Yang XP and Zhou Q: Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine. 73:1036272021. View Article : Google Scholar : PubMed/NCBI | |
Niu Y and Zhou Q: Th17 cells and their related cytokines: Vital players in progression of malignant pleural effusion. Cell Mol Life Sci. 79:1942022. View Article : Google Scholar : PubMed/NCBI | |
Wang ZH, Zhang P, Peng WB, Ye LL, Xiang X, Wei XS, Niu YR, Zhang SY, Xue QQ, Wang HL and Zhou Q: Altered phenotypic and metabolic characteristics of FOXP3+CD3+CD56+ natural killer T (NKT)-like cells in human malignant pleural effusion. Oncoimmunology. 12:21605582022. View Article : Google Scholar | |
Liu GY, Budinger GRS and Dematte JE: Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ. 377:e0663542022. View Article : Google Scholar | |
Noble PW, Barkauskas CE and Jiang D: Pulmonary fibrosis: Patterns and perpetrators. J Clin Invest. 122:2756–2762. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI | |
Okabe Y and Medzhitov R: Tissue biology perspective on macrophages. Nat Immunol. 17:9–17. 2016. View Article : Google Scholar | |
Vannella KM and Wynn TA: Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 79:593–617. 2017. View Article : Google Scholar | |
Byrne AJ, Maher TM and Lloyd CM: Pulmonary macrophages: A new therapeutic pathway in fibrosing lung disease? Trends Mol Med. 22:303–316. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guth AM, Janssen WJ, Bosio CM, Crouch EC, Henson PM and Dow SW: Lung environment determines unique phenotype of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 296:L936–L946. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zeng G, Zhang Z, Wang Y, Shao M, Li C, Lu Z, Zhao Y, Zhang F and Ding W: Urban airborne PM2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. Ecotoxicol Environ Saf. 273:1161622024. View Article : Google Scholar | |
Kumar M, Jha A, Bharti K, Parmar G and Mishra B: Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine (Lond). 17:913–934. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Luo R, Li J, Zhao H, Ouyang S, Yao Y, Chen D, Ling Z, Zhu W, Chen M, et al: Inhaled platelet vesicle-decoyed biomimetic nanoparticles attenuate inflammatory lung injury. Front Pharmacol. 13:10502242022. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Xie QM, Song SM, Guo SN, Fang Y, Fei GH and Wu HM: Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation. Int Immunopharmacol. 131:1117912024. View Article : Google Scholar | |
Smith LM and Kelleher NL; Consortium for Top Down Proteomics: Proteoform: A single term describing protein complexity. Nat Methods. 10:186–187. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Dennery PA and Yao H: Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 314:L544–L554. 2018. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T and Black SM: Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol. 64:1027972023. View Article : Google Scholar : PubMed/NCBI | |
Babic M, Veljovic K, Popović N, Golic N, Radojkovic D and Stankovic M: Antioxidant effect of lactic acid bacteria in human bronchial epithelial cells exposed to cigarette smoke. J Appl Microbiol. 134:lxad2572023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang G, You Z, Qian P, Chen H, Dou Y, Wei Z, Chen Y, Mao C and Zhang J: Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector. Biomaterials. 35:4401–4416. 2014. View Article : Google Scholar : PubMed/NCBI | |
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
MacDonald MI, Polkinghorne KR, MacDonald CJ, Leong P, Hamza K, Kathriachchige G, Osadnik CR, King PT and Bardin PG: Elevated blood lactate in COPD exacerbations associates with adverse clinical outcomes and signals excessive treatment with β2-agonists. Respirology. 28:860–868. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pacl HT, Chinta KC, Reddy VP, Nadeem S, Sevalkar RR, Nargan K, Lumamba K, Naidoo T, Glasgow JN, Agarwal A and Steyn AJC: NAD(H) homeostasis underlies host protection mediated by glycolytic myeloid cells in tuberculosis. Nat Commun. 14:54722023. View Article : Google Scholar : PubMed/NCBI | |
Huang JJ, Yang XQ, Zhuo ZQ and Yuan L: Clinical characteristics of plastic bronchitis in children: A retrospective analysis of 43 cases. Respir Res. 23:512022. View Article : Google Scholar : PubMed/NCBI |