Role of DLC1 tumor suppressor gene and MYC oncogene in pathogenesis of human hepatocellular carcinoma: Potential prospects for combined targeted therapeutics (Review)
- Authors:
- Drazen B. Zimonjic
- Nicholas C. Popescu
-
Affiliations: Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA - Published online on: May 10, 2012 https://doi.org/10.3892/ijo.2012.1474
- Pages: 393-406
This article is mentioned in:
Abstract
Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bishop JM: The molecular genetics of cancer. Science. 235:305–311. 1987. View Article : Google Scholar : PubMed/NCBI | |
Rowley JD: Ph1-positive leukaemia, including chronic myelogenous leukaemia. Clin Haematol. 9:55–86. 1980.PubMed/NCBI | |
Kraus MH, Popescu NC, Amsbaugh SC and King CR: Overexpression of the EGF receptor-related protooncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J. 6:605–610. 1987.PubMed/NCBI | |
Jones PA and Baylin SB: The epigenomics of cancer. Cell. 128:683–692. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M, Grever M, Galm O, Dauses T, Karp JE, Rudek MA, Zhao M, Smith BD, Manning J, Jiemjit A, Dover G, Mays A, Zwiebel J, Murgo A, Weng LJ and Herman JG: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 66:6361–6369. 2006. View Article : Google Scholar : PubMed/NCBI | |
Richon VM, Garcia-Vargas J and Hardwick JS: Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett. 280:201–210. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thorgeirsson SS and Grisham JW: Molecular pathogenesis of human hepatocellullar carcinoma. Nat Genet. 31:339–346. 2002. View Article : Google Scholar : PubMed/NCBI | |
Altekruse SF, McGlynn KA and Reichman ME: Hepatocellular carcinima incidence, mortality and survival trends in United States from 1975 to 2005. J Clin Oncol. 27:1485–1491. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones RG and Thompson CB: Tumor suppressor and cell metabolism: a recipe for cancer growth. Genes Dev. 23:537–548. 2009. View Article : Google Scholar : PubMed/NCBI | |
Keck CL, Zimonjic DB, Yuan BZ, Thorgeirsson SS and Popescu NC: Nonrandom breakpoints of unbalanced chromosome translocations in human hepatocellular carcinoma cell lines. Cancer Genet Cytogenet. 111:37–44. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zimonjic DB, Keck CL, Thorgeirsson SS and Popescu NC: Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology. 29:1208–1214. 1999. View Article : Google Scholar | |
Popescu NC: Genetic alterations in cancer as a result of breakage at fragile sites. Cancer Lett. 192:1–17. 2003. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Calin GA and Croce CM: MicroRNAs in cancer. Annu Rev Med. 60:167–179. 2009. View Article : Google Scholar | |
Simon D, Knowles B and Weith A: Abnormalities of chromosome 1 and loss of heterozygosity on 1p in primary hepatomas. Oncogene. 6:765–770. 1991.PubMed/NCBI | |
Yeh SH, Chen PJ, Chen HL, Lai MY, Wang CC and Chen DS: Frequent genetic alterations at the distal region of chromosome 1p in human hepatocellular carcinomas. Cancer Res. 54:4188–4192. 1994.PubMed/NCBI | |
Woo HG, Park ES, Lee JS, Lee YH, Ishikawa T, Kim YJ and Thorgeirsson SS: Identification of potential driver genes in human liver carcinoma by genomewide screening. Cancer Res. 69:4059–4066. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuan BZ, Keck-Waggoner C, Zimonjic DB, Thorgeirsson SS and Popescu NC: Alterations of FHIT gene in human hepatocellular carcinoma. Cancer Res. 60:1049–1053. 2000.PubMed/NCBI | |
Imreh S, Klein G and Zabarovsky ER: Search for unknown tumor-antagonizing genes. Genes Chromosomes Cancer. 38:307–321. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Popescu NC, Klein G and Imreh S: The interferon-alpha responsive gene TMEM7 suppresses cell proliferation and is downregulated in human hepatocellular carcinoma. Cancer Genet Cytogenet. 177:6–15. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zimonjic DB, Zhou X, Lee JS, Ullmannova-Benson V, Tripathi V, Thorgeirsson SS and Popescu NC: Acquired genetic and functional alterations associated with transforming growthfactor beta type I resistance in Hep3B human hepatocellular carcinoma cell line. J Cell Mol Med. 13:3985–3992. 2009. View Article : Google Scholar | |
Ludes-Meyers JH, Bednarek AK, Popescu NC, Bedford M and Aldaz CM: WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenet Genome Res. 100:101–110. 2003. View Article : Google Scholar : PubMed/NCBI | |
Park SW, Ludes-Meyers J, Zimonjic DB, Durkin ME, Popescu NC and Aldaz CM: Frequent downregulation and loss of WWOX gene expression in human hepatocellular carcinoma. Br J Cancer. 91:753–759. 2004.PubMed/NCBI | |
Yuan BZ, Zhou X, Zimonjic DB, Durkin ME and Popescu NC: Amplification and overexpression of the EMS 1 oncogene, a possible prognostic marker, in human hepatocellular carcinoma. J Mol Diagn. 5:48–53. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zimonjic DB, Durkin ME, Keck-Waggoner CL, Park SW, Thorgeirsson SS and Popescu NC: SMAD5 gene expression, re arrangements, copy number, and amplification at fragile site FRA5C in human hepatocellular carcinoma. Neoplasia. 5:390–396. 2003. View Article : Google Scholar : PubMed/NCBI | |
Emi M, Fujiwara Y, Ohata H, Tsuda H, Hirohashi S, Koike M, Miyaki M, Monden M and Nakamura Y: Allelic loss at chromosome band 8p21.3-p22 is associated with progression of hepatocellular carcinoma. Genes Chromosomes Cancer. 7:152–157. 1993. View Article : Google Scholar : PubMed/NCBI | |
Pineau P, Nagai H, Prigent S, Wei Y, Gyapay G, Weissenbach J, Tiollais P, Buendia MA and Dejean A: Identification of three distinct regions of allelic deletions on the short arm of chromosome 8 in hepatocellular carcinoma. Oncogene. 18:3127–3134. 1999. View Article : Google Scholar : PubMed/NCBI | |
Qin LX, Tang ZY, Sham JS, Ma ZC, Ye SL, Zhou XD, Wu ZQ, Trent JM and Guan XY: The association of chromosome 8p deletion and tumor metastasis in human hepatocellular carcinoma. Cancer Res. 59:5662–5665. 1999.PubMed/NCBI | |
Chan KL, Lee JM, Guan XY, Fan ST and Ng IO: High-density allelotyping of chromosome 8p in hepatocellular carcinoma and clinicopathologic correlation. Cancer. 94:3179–3185. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kahng YS, Lee YS, Kim BK, Park WS, Lee JY and Kang CS: Loss of heterozygosity of chromosome 8p and 11p in the dysplastic nodule and hepatocellular carcinoma. J Gastroenterol Hepatol. 18:430–436. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pang JZ, Qin LX, Ren N, Hei ZY, Ye QH, Jia WD, Sun BS, Lin GL, Liu DY, Liu YK and Tang ZY: Loss of heterozygosity at D8S298 is a predictor for long-term survival of patients with tumor-node-metastasis stage I of hepatocellular carcinoma. Clin Cancer Res. 13:7363–7369. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yam JW, Wong CM and Ng IO: Molecular and functional genetics in hepatocellular carcinoma. Front Biosci (Schol Ed). 2:117–134. 2010. View Article : Google Scholar | |
Birnbaum D, Adélaïde J, Popovici C, Charafe-Jauffret E, Mozziconacci MJ and Chaffanet M: Chromosome arm 8p and cancer: a fragile hypothesis. Lancet Oncol. 4:639–642. 2003. View Article : Google Scholar : PubMed/NCBI | |
Popescu NC: Fragile sites and cancer genes on the short arm of chromosome 8. Lancet Oncol. 5:772004. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara Y, Ohata H, Kuroki T, Koyama K, Tsuchiya E, Monden M and Nakamura Y: Isolation of a candidate tumor suppressor gene on chromosome 8p21.3-p22 that is homologous to an extracellular domain of the PDGF receptor beta gene. Oncogene. 10:891–895. 1995.PubMed/NCBI | |
Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS and Popescu NC: Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 58:2196–2199. 1998.PubMed/NCBI | |
Yan J, Yu Y, Wang N, Chang Y, Ying H, Liu W, He J, Li S, Jiang W, Li Y, Liu H, Wang H and Xu Y: LFIRE-1/HFREP-1, a liver-specific gene, is frequently downregulated and has growth suppressor activity in hepatocellular carcinoma. Oncogene. 23:1939–1949. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shih YL, Shyu RY, Hsieh CB, Lai HC, Liu KY, Chu TY and Lin YW: Promoter methylation of the secreted frizzled-related protein 1 gene SFRP1 is frequent in hepatocellular carcinoma. Cancer. 107:579–590. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zhang YL, Teng XM, Lin Y, Zheng DL, Yang PY and Han ZG: Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma. BMC Cancer. 7:1262007. View Article : Google Scholar : PubMed/NCBI | |
Lei KF, Wang YF, Zhu XQ, Lu PC, Sun BS, Jia HL, Ren N, Ye QH, Sun HC, Wang L, Tang ZY and Qin LX: Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma. BMC Cancer. 7:1722007. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zheng DL, Qin FS, Cheng N, Chen H, Wan BB, Wang YP, Xiao HS and Han ZG: Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. J Clin Invest. 120:223–241. 2010. View Article : Google Scholar : PubMed/NCBI | |
Finch PW, He X, Kelley MJ, Uren A, Schaudies P, Popescu NC, Rudicoff S, Aaronson SA, Varmus HE and Rubin JS: Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci USA. 94:6670–6675. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rubin JS, Barshishat-Kupper M, Feroze-Merzoug F and Xi ZF: Secreted WNT antagonists as tumor suppressors: pro and con. Front Biosci. 11:2093–2105. 2006. View Article : Google Scholar : PubMed/NCBI | |
Saini S, Liu J, Yamamura S, Majid S, Kawakami K, Hirata H and Dahiya R: Functional significance of secreted Frizzled-related protein 1 in metastatic renal cell carcinomas. Cancer Res. 69:6815–6822. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kawamoto K, Hirata H, Kikuno N, Tanaka Y, Nakagawa M and Dahiya R: DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines. Int J Cancer. 123:535–542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thompson MD and Monga SP: WNT/beta-catenin signaling in liver health and disease. Hepatology. 45:1298–1305. 2007. View Article : Google Scholar : PubMed/NCBI | |
Takigawa Y and Brown AM: Wnt signaling in liver cancer. Curr Drug Targets. 9:1013–1024. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ching YP, Wong CM, Chan SF, Leung TH, Ng DC, Jin DY and Ng IO: Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J Biol Chem. 278:10824–10830. 2003. View Article : Google Scholar : PubMed/NCBI | |
Durkin EM, Ullmannova V, Guan M and Popescu NC: Deleted in liver cancer 3(DLC-3), a novel RhoGTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. Oncogene. 26:4580–4589. 2007. View Article : Google Scholar : PubMed/NCBI | |
Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS and Popescu NC: DLC-1: a Rho GTPase-activating protein and tumor suppressor. J Cell Mol Med. 11:1185–1207. 2007. View Article : Google Scholar : PubMed/NCBI | |
Low JS, Tao Q, Ng KM, Goh HK, Shu XS, Woo WL, Ambinder RF, Srivastava G, Shamay M, Chan AT, Popescu NC and Hsieh WS: A novel isoform of the 8p22 tumor suppressor gene DLC1 suppresses tumor growth and is frequently silenced in multiple common tumors. Oncogene. 30:1923–1935. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liao YC and Lo SH: Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int J Biochem Cell Biol. 40:843–847. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xue W, Krasnitz A, Lucito R, Sordella R, Vanaelst L, Cordon-Cardo C, Singer S, Kuehnel F, Wigler M, Powers S, Zender L and Lowe SW: DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev. 22:1439–1444. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lahoz A and Hall A: DLC1: a significant GAP in the cancer genome. Genes Dev. 22:1724–1730. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vigil D, Cherfils J, Rossman KL and Der CJ: Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 12:842–857. 2010. View Article : Google Scholar : PubMed/NCBI | |
Durkin ME, Avner MR, Huh CG, Yuan BZ, Thorgeirsson SS and Popescu NC: DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Lett. 579:1191–1196. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hers I, Wherlock M, Homma Y, Yagisawa H and Tavaré JM: Identification of p122RhoGAP (deleted in liver cancer-1) Serine 322 as a substrate for protein kinase B and ribosomal S6 kinase in insulin-stimulated cells. J Biol Chem. 281:4762–4770. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murakami R, Osanai T, Tomita H, Sasaki S, Maruyama A, Itoh K, Homma Y and Okumura K: p122 protein enhances intra-cellular calcium increase to acetylcholine: its possible role in the pathogenesis of coronary spastic angina. Arterioscler Thromb Vasc Biol. 30:1968–1975. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Li Y, Fan X, Zhang C, Wang Y and Zhao Z: Analysis of gene expression profile of periodontal ligament cells subjected to cyclic compressive force. DNA Cell Biol. 30:865–873. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ng IO, Liang ZD, Cao L and Lee TK: DLC1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC1. Cancer Res. 60:6581–6584. 2000.PubMed/NCBI | |
Park SW, Durkin ME, Thorgeirsson SS and Popescu NC: DNA variants of DLC-1, a candidate tumor suppressor gene in human hepatocellular carcinoma. Int J Oncol. 23:133–137. 2003.PubMed/NCBI | |
Liao YC, Shih YP and Lo SH: Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Res. 68:7718–7722. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE and Kinzler KW: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321:1801–1806. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B and Iacobuzio- Donahue CA: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 467:1114–1117. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Zhou G, Zhai Y, Zhang H, Yang H, Zhi L, Zhang X, Chu J and He F: Association of DLC1 gene polymorphism with susceptibility to hepatocellular carcinoma in Chinese hepatitis B virus carriers. Cancer Epidemiol. 33:265–270. 2009. View Article : Google Scholar : PubMed/NCBI | |
Teodoridis JM, Hardie C and Brown R: CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett. 268:177–186. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yuan BZ, Durkin ME and Popescu NC: Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genet Cytogenet. 140:113–117. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wong CM, Lee JM, Ching YP, Jin DY and Ng IO: Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res. 63:7646–7651. 2003.PubMed/NCBI | |
Ko FC, Yeung YS, Wong CM, Chan LK, Poon RT, Ng IO and Yam JW: Deleted in liver cancer 1 isoforms are distinctly expressed in human tissues, functionally different and under differential transcriptional regulation in hepatocellular carcinoma. Liver Int. 30:139–148. 2010. View Article : Google Scholar | |
Croce MC: Causes and consequences of microRNA dysregulation in cancer. Nature Rev Genet. 10:704–714. 2009. View Article : Google Scholar : PubMed/NCBI | |
Banaudha K, Kaliszewski M, Korolnek T, Florea L, Yeung ML, Kuan KT and Kumar A: MicroRNA silencing of tumor suppressor DLC-1 promotes efficient hepatitis C virus replication in primary human hepatocytes. Hepatology. 53:53–61. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY and Ng IO: Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res. 65:8861–8868. 2005. View Article : Google Scholar : PubMed/NCBI | |
Healy KD, Hodgson L, Kim TY, Shutes AT, Maddileti S, Juliano RL, Hahn KM, Harden TK, Bang YJ and Der CJ: DLC1 suppresses non-small lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Mol Carcinog. 47:326–337. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim TY, Lee JW, Kim HP, Jong HS, Kim TY, Jung M and Bang YJ: DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology and migration in human hepatocellular carcinoma. Biochem Biophys Res Commun. 355:72–77. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qian X, Li G, Asmussen HK, Asnaghi L, Vass WC, Braverman R, Yamada KM, Popescu NC, Papageorge AG and Lowy DR: Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proc Natl Acad Sci USA. 104:9012–9017. 2007. View Article : Google Scholar | |
Guan M, Tripathi V, Zhou X and Popescu NC: Adenovirus-mediated restoration of the expression of the tumor suppressor gene DLC1 inhibits the proliferation and tumorigenicity of aggressive, androgen-independent human prostate cancer cell lines: Prospects for gene therapy. Cancer Gene Ther. 15:371–381. 2008. View Article : Google Scholar | |
Zhou X, Zimonjic DB, Park SW, Yang XY, Durkin ME and Popescu NC: DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. Int J Oncol. 32:1258–1291. 2008. | |
Holeiter G, Heering J, Erlmann P, Schmid S, Jähne R and Olayioye MA: Deleted in liver cancer 1 controls migration through a Dia1-dependent signaling pathway. Cancer Res. 68:8743–8751. 2008. View Article : Google Scholar : PubMed/NCBI | |
Erlmann P, Schmid S, Horenkamp FA, Geyer M, Pomorski TG and Olayioye M: DLC1 activation requires lipid interation through a polybasic region preceding the RhoGap domain. Mol Biol Cell. 20:4400–4411. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhong D, Zhang J, Yang S, Soh UJ, Buschdorf JP, Zhou YT, Yang D and Low BC: The SAM domain of the RhoGAP DLC1 binds EF1A1 to regulate cell migration. J Cell Sci. 122:414–424. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sahai E and Marshall CJ: RHO-GTPases and cancer. Nat Rev Cancer. 2:133–142. 2002. View Article : Google Scholar | |
Gómez del Pulgar T, Benitah SA, Valerón PF, Espina C and Lacal JC: Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays. 27:602–613. 2005.PubMed/NCBI | |
Jaffe AB and Hall A: Rho GTPases in transformation and metastasis. Adv Cancer Res. 84:57–80. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ridley AJ: Rho proteins and cancer. Breast Cancer Res Treat. 84:13–19. 2004. View Article : Google Scholar | |
Grise F, Bidaud A and Moreau V: Rho GTPases in hepatocellular carcinoma. Biochim Biophys Acta. 1795:137–151. 2009.PubMed/NCBI | |
Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, Walker R, Jia HL, Ye QH, Qin LX, Tang ZY, He P, Hunter KW, Thorgeirsson SS, Meltzer PS and Wang XW: Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology. Dec 24–2011.(Epub ahead of print). | |
Pihur V and Datta S and Datta S: Finding common genes in multiple cancer types through meta-analysis of microarray experiments: a rank aggregation approach. Genomics. 92:400–403. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Thorgeirsson SS and Popescu NC: Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene. 23:1308–1313. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kawai K, Yamaga M, Iwamae Y, Kiyota M, Kamata H, Hirata H, Homma Y and Yagisawa H: A PLCdelta1-binding protein, p122RhoGAP, is localized in focal adhesions. Biochem Soc Trans. 32:1107–1109. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim TY, Vigil D, Der CJ and Juliano RL: Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev. 28:77–83. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuan BZ, Jefferson AM, Millecchia L, Popescu NC and Reynolds SH: Morphological changes and nuclear translocation of DLC1 tumor suppressor protein precede apoptosis in human non-small cell lung carcinoma cells. Exp Cell Res. 313:3868–3880. 2007. View Article : Google Scholar : PubMed/NCBI | |
Goodison S, Yuan J, Sloan D, Kim R, Li C, Popescu NC and Urquidi V: The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Res. 65:6042–6053. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ko FC, Chan LK, Tung EK, Lowe SW, Ng IO and Yam JW: Akt phosphorylation of deleted in liver cancer 1 abrogates its suppression of liver cancer tumorigenesis and metastasis. Gastroenterology. 139:1397–1407. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yam JW, Ko FC, Chan CY, Jin DY and Ng IO: Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Res. 66:8367–8372. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liao YC, Si L, deVere White RW and Lo SH: The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. J Cell Biol. 176:43–49. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hall EH, Daugherty AE, Choi CK, Horwitz AF and Brautigan DL: Tensin1 requires protein phosphatase-1alpha in addition to RhoGAP DLC-1 to control cell polarization, migration, and invasion. J Biol Chem. 284:34713–34722. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chan LK, Ko FC, Ng IO and Yam JW: Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. PLoS One. 4:e55722009. View Article : Google Scholar : PubMed/NCBI | |
Hafizi S, Sernstad E, Swinny JD, Gomez MF and Dahlbäck B: Individual domains of Tensin2 exhibit distinct subcellular localisations and migratory effects. Int J Biochem Cell Biol. 42:52–61. 2010. View Article : Google Scholar : PubMed/NCBI | |
Clark K, Howe JD, Pullar CE, Green JA, Artym VV, Yamada KM and Critchley DR: Tensin 2 modulates cell contractility in 3D collagen gels through the RhoGAP DLC1. J Cell Biochem. 109:808–817. 2010.PubMed/NCBI | |
Kawai K, Kitamura SY, Maehira K, Seike J and Yagisawa H: START-GAP1/DLC1 is localized in focal adhesions through interaction with the PTB domain of tensin2. Adv Enzyme Regul. 50:202–215. 2010. View Article : Google Scholar : PubMed/NCBI | |
Du X, Qian X, Papageorge A, Vass WC, Braverman R and Lowy DR: Complex formation between DLC START domain and Cav1 contributes to the tumor suppressor function of DLC1. Proc Am Assoc Cancer Res. 52:5232011. | |
Yang XY, Guan M, Vigil D, Der CJ, Lowy DR and Popescu NC: p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene. 28:1401–1409. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tripathi V, Zimonjic DB and Popescu NC: DLC1 and α-catenin protein interaction enhances DLC1 antioncogenic activity by stabilizing adherens junctions and suppressing NFκB signaling. Proc Am Assoc Cancer Res. 52:9622011. | |
Yang X, Popescu NC and Zimonjic DB: DLC1 interaction with S100A10 mediates inhibtion of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-indpendent mechanism. Cancer Res. 71:2916–2925. 2011.PubMed/NCBI | |
Scholz RP, Gustafsson JO, Hoffmann P, Jaiswal M, Ahmadian MR, Eisler S, Erlmann P, Schmid S, Hausser A and Olayioye MA: The tumor suppressor protein DLC1 is regulated by PKD-mediated GAP domain phosphorylation. Exp Cell Res. 317:496–503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tompa P: Intrinsically unstructured proteins. Trends Biochem Sci. 27:527–533. 2002. View Article : Google Scholar | |
Hermeking H: The 14-3-3 cancer connection. Nat Rev Cancer. 3:931–943. 2003. View Article : Google Scholar : PubMed/NCBI | |
Scholz RP, Regner J, Theil A, Erlmann P, Holeiter G, Jähne R, Schmid S, Hausser A and Olayioye MA: DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. J Cell Sci. 122:92–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wuestefeld T and Zender L: DLC1 and liver cancer: the Akt connection. Gastroenterology. 139:1093–1096. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oliveira AM, Ross JS and Fletcher JA: Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. Am J Clin Pathol. 124:S16–S28. 2005.PubMed/NCBI | |
Meyer N and Penn LZ: Reflecting on 25 years with MYC. Nat Rev Cancer. 8:976–990. 2008.PubMed/NCBI | |
Varmus H: Retroviruses. Science. 240:1427–1435. 1988. View Article : Google Scholar : PubMed/NCBI | |
Peters G: Oncogenes at viral integration sites. Cell Growth Differ. 1:503–510. 1990.PubMed/NCBI | |
Popescu NC and Zimonjic DB: Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med. 6:151–159. 2002. View Article : Google Scholar : PubMed/NCBI | |
Payne GS, Bishop JM and Varmus HE: Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature. 295:209–214. 1982. View Article : Google Scholar : PubMed/NCBI | |
Popescu NC, Zimonjic DB and DiPaolo JA: Viral integration, fragile sites and proto-oncogenes in human neoplasia. Hum Genet. 84:383–386. 1990. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kaur G, Zhawar VK, Zimonjic DB, Popescu NC, Kandpal R and Athwal RS: Role of SV40 integration site at chromosomal interval 1q21.1 in immortalized CRL2504 cells. Cancer Res. 69:7819–7825. 2009. View Article : Google Scholar : PubMed/NCBI | |
Weinberg RA: Integrated genomes of animal viruses. Annu Rev Biochem. 49:197–226. 1980. View Article : Google Scholar : PubMed/NCBI | |
Bester AC, Schwartz M, Schmidt M, Garrigue A, Hacein-Bey-Abina S, Cavazzana-Calvo M, Ben-Porat N, Von Kalle C, Fischer A and Kerem B: Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Ther. 13:1057–1059. 2006. View Article : Google Scholar : PubMed/NCBI | |
Croce CM and Nowell PC: Molecular basis of human B cell neoplasia. Blood. 65:1–7. 1985. | |
Zimonjic DB, Keck-Waggoner C and Popescu NC: Novel genomic imbalances and chromosome translocations involving c-myc gene in Burkitt’s lymphoma. Leukemia. 15:1582–1588. 2001.PubMed/NCBI | |
Alitalo KM and Schwab M: Oncogene amplification in tumor cells. Adv Cancer Res. 47:235–281. 1986. View Article : Google Scholar | |
Alitalo K, Schwab M, Lin CC, Varmus HE and Bishop JM: Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA. 80:1707–1711. 1983. View Article : Google Scholar | |
Zimonjic DB, Keck-Waggoner CL, Yuan BZ, Kraus MH and Popescu NC: Profile of genetic alterations and tumorigenicity of human breast cancer cells. Int J Oncol. 16:221–230. 2000.PubMed/NCBI | |
Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC and Weinberg RA: Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15:50–65. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kaposi-Novak P, Libbrecht L, Woo HG, Lee YH, Sears NC, Coulouarn C, Conner EA, Factor VM, Roskams T and Thorgeirsson SS: Central role of c-Myc during malignant conversion in human hepatocarcinogenesis. Cancer Res. 69:2775–2782. 2009. View Article : Google Scholar : PubMed/NCBI | |
Farazi PA and DePinho RA: Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 6:674–687. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schlaeger C, Longerich T, Schiller C, Bewerunge P, Mehrabi A, Toedt G, Kleeff J, Ehemann V, Eils R, Lichter P, Schirmacher P and Radlwimmer B: Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology. 47:511–520. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Ponzetto A, Tiollais P and Buendia MA: Multiple rearrangements and activated expression of c-myc induced by woodchuck hepatitis virus integration in a primary liver tumour. Res Virol. 143:89–96. 1992. View Article : Google Scholar : PubMed/NCBI | |
Tokino T and Matsubara K: Chromosomal sites for hepatitis B virus integration in human hepatocellu lar carcinoma. J Virol. 65:6761–6764. 1991.PubMed/NCBI | |
Yunis JJ, Soreng AL and Bowe AE: Fragile sites are targets of diverse mutagens and carcinogens. Oncogene. 1:59–69. 1987.PubMed/NCBI | |
Yang L, He J, Chen L and Wang G: Hepatitis B virus X protein upregulates expression of SMYD3 and C-MYC in HepG2 cells. Med Oncol. 26:445–451. 2009. View Article : Google Scholar : PubMed/NCBI | |
Santoni-Rugiu E, Nagy P, Jensen MR, Factor VM and Thorgeirsson SS: Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor. Am J Pathol. 149:407–428. 1996.PubMed/NCBI | |
Sargent LM, Sanderson ND and Thorgeirsson SS: Ploidy and karyotypic alterations associated with early events in the development of hepatocarcinogenesis in transgenic mice harboring c-myc and transforming growth factor alpha transgenes. Cancer Res. 56:2137–2142. 1996. | |
Factor VM, Laskowska D, Jensen MR, Woitach JT, Popescu NC and Thorgeirsson SS: Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model. Proc Natl Acad Sci USA. 97:2196–2201. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sargent LM, Zhou X, Keck CL, Sanderson ND, Zimonjic DB, Popescu NC and Thorgeirsson SS: Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-alpha in the liver. Am J Path. 154:1047–1055. 1999. View Article : Google Scholar : PubMed/NCBI | |
Grisham JW: Interspecies comparison of liver carcinogenesis: implications for cancer risk assessment. Carcinogenesis. 18:59–81. 1997. View Article : Google Scholar : PubMed/NCBI | |
Grisham JW: Molecular genetic alterations in primary hepatocellular meoplasm: hepatocellular adenoma, hepatocellular carcinoma, and hepatoblastoma. The Molecular Basis of Human Cancer. Coleman WB and Tsongalis GT: Humana Press; Totowa, New Jersey, NJ: pp. 259–346. 2001 | |
Durkin ME, Keck-Waggoner CL, Popescu NC and Thorgeirsson SS: Integration of a c-myc transgene results in disruption of the mouse Gtf2ird1 gene, the homologue of the human GTF2IRD1 gene hemizygously deleted in Williams-Beuren syndrome. Genomics. 73:20–27. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tassabehji M, Hammond P, Karmiloff-Smith A, Thompson P, Thorgeirsson SS, Durkin ME, Popescu NC, Hutton T, Metcalfe K, Rucka A, Stewart H, Read AP, Maconochie M and Donnai D: GTF2IRD1 in craniofacial development of humans and mice. Science. 310:1184–1187. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zimonjic DB, Ullmannova-Benson V, Factor VM, Thorgeirsson SS and Popescu NC: Recurrent and nonrandom DNA copy number and chromosome alterations in Myc transgenic mouse model for hepatocellular carcinogenesis: implications for human disease. Cancer Genet Cytogenet. 191:17–26. 2009. View Article : Google Scholar | |
Zimonjic DB, Zhang H, Shan Z, Factor VM, Trent J, Thorgeirsson SS and Popescu NC: DNA amplification associated with double minutes originating from chromosome 19 in mouse hepatocellular carcinoma. Cytogenet Cell Genet. 93:114–116. 2001. View Article : Google Scholar : PubMed/NCBI | |
Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G and Thorgeirsson SS: Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res. 53:1719–1723. 1993. | |
Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH and Felsher DW: MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 431:1112–1117. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, Mu D, Lucito R, Powers S and Lowe SW: Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 125:1253–1267. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roth JA and Grammer SF: Tumor suppressor gene therapy. Tumor Supressor Genes: Regulation, Function and Medicinal Applications. El-Deiry WS: 2. Humana Press; Totowa, NJ: pp. 577–597. 2003, View Article : Google Scholar | |
Weinstein IB: Cancer. Addiction to oncogenes - the Achilles heel of cancer. Science. 297:63–64. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sharma SV and Settleman J: Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 21:3214–3231. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang J, Xie L, Xie X, Guo Q, Lv J, Gao Z, Qian Z, Yin X, Zheng L, Zhu G, Ji Q and Ren Z: Molecular characterization of hepatocellular carcinoma (HCC) patient derived explant models. Proc Am Assoc Cancer Res. 52:5772011. | |
Wong CC, Wong CM, Au SL and Ng IO: RhoGTPases and Rho-effectors in hepatocellular carcinoma metastasis: ROCK N’ Rho move it. Liver Int. 30:642–656. 2010.PubMed/NCBI | |
Takamura M, Sakamoto M, Genda T, Ichida T, Asakura H and Hirohashi S: Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology. 33:577–581. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ogawa T, Tashiro H, Miyata Y, Ushitora Y, Fudaba Y, Kobayashi T, Arihiro K, Okajima M and Asahara T: Rho-associated kinase inhibitor reduces tumor recurrence after liver transplantation in a rat hepatoma model. Am J Transplant. 7:347–355. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nakajima M, Hayashi K, Egi Y, Katayama K, Amano Y, Uehata M, Ohtsuki M, Fujii A, Oshita K, Kataoka H, Chiba K, Goto N and Kondo T: Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother Pharmacol. 52:319–324. 2003. View Article : Google Scholar | |
McHenry PR and Vargo-Gogola T: Pleiotropic functions of Rho GTPase signaling: a Trojan horse or Achilles’ heel for breast cancer treatment? Curr Drug Targets. 11:1043–1058. 2010. | |
Ullmannova V and Popescu NC: Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detect Prev. 31:110–118. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pang X, Yi T, Yi Z, Cho S G, Qu W, Pinkaew D, Fujise K and Liu M: Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways. Cancer Res. 69:518–525. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Dong A, Gao C, Tan C, Xie Z, Zu X, Qu L and Jiang Y: New synthetic flavone derivatives induce apoptosis of hepatocarcinoma cells. Bioorg Med Chem. 18:6322–6328. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshizumi T, Ohta T, Ninomiya I, Terada I, Fushida S, Fujimura T, Nishimura G, Shimizu K, Yi S and Miwa K: Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int J Oncol. 25:631–639. 2004. | |
Zhou X, Yang XY and Popescu NC: Synergistic antineoplastic effect of DLC1 tumor suppressor protein and histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), on prostate and liver cancer cells: perspectives for therapeutics. Int J Oncol. 36:999–1005. 2010. | |
Chung GE, Yoon JH, Lee JH, Kim HY, Myung SJ, Yu SJ, Lee SH, Lee SM, Kim YJ and Lee HS: Ursodeoxycholic acid-induced inhibition of DLC1 protein degradation leads to suppression of hepatocellular carcinoma cell growth. Oncol Rep. 25:1739–1746. 2011.PubMed/NCBI | |
Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA, Brown-Swigart L, Johnson L and Evan GI: Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell. 14:447–457. 2008.PubMed/NCBI | |
Larsson LG and Henricksson MA: The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res. 316:1429–1437. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin CP, Liu CR, Lee CN, Chan TS and Liu HE: Targeting c-Myc as a novel approach for hepatocellular carcinoma. World J Hepatol. 2:16–20. 2010.PubMed/NCBI | |
Brooks TA and Hurley LH: Targeting MYC expression through G-quardruplexes. Genes Cancer. 1:641–649. 2010. View Article : Google Scholar : PubMed/NCBI | |
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D and Bruix J: SHARP Investigators Study Group: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Llovet J M and Bruix J: Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 48:1312–1327. 2008. | |
Cao Z, Fan-Minogue H, Bellovin DI, Yevtodiyenko A, Arzeno J, Yang Q, Gambhir SS and Felsher DW: MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Cance Res. 71:2286–2297. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kawata S, Yamasaki E, Nagase T, Inui Y, Ito N, Matsuda Y, Inada M, Tamura S, Noda S, Imai Y and Matsuzawa Y: Effect of pravastatin on survival in patients with advanced hepatocellular carcinoma. A randomized controlled trial. Br J Cancer. 84:886–891. 2001. View Article : Google Scholar : PubMed/NCBI | |
Homma Y and Emori Y: A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities. EMBO J. 14:286–291. 1995.PubMed/NCBI | |
Ponting CP and Aravind L: START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci. 24:130–132. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Han H, Mousses S and Von Hoff DD: Targeting loss-of-function mutations in tumor-suppressor genes as a strategy for development of cancer therapeutic agents. Semin Oncol. 33:513–520. 2006. View Article : Google Scholar : PubMed/NCBI |