1
|
Neidle S: DNA minor-groove recognition by
small molecules. Nat Prod Rep. 18:291–309. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nelson EM, Tewey KM and Liu LF: Mechanism
of antitumor drug action: poisoning of mammalian DNA topoisomerase
II on DNA by 4′-(9-acridinylamino)-methanesulfon-manisidide. Proc
Natl Acad Sci USA. 81:1361–1365. 1984.
|
3
|
Sinha R, Islam MM, Bhadra K, Kumar GS,
Banerjee A and Maiti M: The binding of DNA intercalating and
non-intercalating compounds to A-form and protonated form of
poly(rC)·poly(rG): Spectroscopic and viscometric study. Bioorgan
Med Chem. 14:800–814. 2006.PubMed/NCBI
|
4
|
Williams TT and Barton JK: Charge
transport in DNA. DNA and RNA Binders: from small molecules to
drugs. Demeunynck M, Bailly C and Wilson WD: Wiley-VCH; Weinheim:
1. pp. 1462003
|
5
|
Dadgarnezhad A, Sheikhshoaie I and Baghaei
F: Corrosion inhibitory effects of a new synthetic symmetrical
Schiff-base on carbon steel in acid media. Anti-Corrosion Methods
Materials. 51:266–271. 2004. View Article : Google Scholar
|
6
|
Ma H, Chen S, Niu L, Zhao S, Li S and Li
D: Inhibition of copper corrosion by several Schiff bases in
aerated halide solutions. J Appl Electrochem. 32:65–72. 2002.
View Article : Google Scholar
|
7
|
Nair R, Shah A, Baluja S and Chanda S:
Synthesis and antibacterial activity of some Schiff base complexes.
J Serb Chem Soc. 71:733–744. 2006. View Article : Google Scholar
|
8
|
Morad FM, El Ajaily MM and Gweirif SB:
Preparation, physical characterization and antibacterial activity
of Ni (II) Schiff base complex. J Sci Applicat. 1:72–78. 2007.
|
9
|
Hou H, Zhu J, Liu Y and Li Q:
Antibacterial activity of a kind of novel Schiff base and its 3d,4f
complexes. Acta Physicochim Sin. 23:987–992. 2007.
|
10
|
Kuz’min VE, Lozitsky VP, Kamalov GL,
Lozitskaya RN, Zheltvay AI, Fedtchouk AS and Kryzhanovsky DN:
Analysis of the structure - anticancer activity relationship in a
set of Schiff bases of macrocyclic 2,6-bis(2- and
4-formylaryloxymethyl) pyridines. Acta Biochim. 47:867–876.
2000.PubMed/NCBI
|
11
|
Ye Y, Hu J, He L and Zeng Y:
Surface-enhanced Raman spectroscopy of some Schiff base complexes
and their interaction with DNA. Vibr Spectrosc. 20:1–4. 1999.
View Article : Google Scholar
|
12
|
Wang B-D, Yang Z-Y, Qin W, Cai T-K and
Crewdson P: Synthesis, characterization, cytotoxic activities, and
DNA-binding properties of the La(III) complex with naringenin
schiff-base. Bioorg Med Chem. 14:1880–1888. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Vijayalakshmi R, Kanthimathi M,
Subramanian V and Nair BU: Interaction of DNA with [Cr(Schi¡
base)(H2O)2]ClO4. Biochim Biophys
Acta. 1475:157–162. 2000.
|
14
|
Silveira VCd, Luz JS, Oliveira CC,
Graziani I, Ciriolo MR and Ferreira AMdC: Double-strand DNA
cleavage induced by oxin-dole-Schiff base copper(II) complexes with
potential antitumor activity. J Inorg Biochem. 102:1090–1103. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Al-Douh MH, Al-Fatlawy AA and Abid OH:
Synthesis and characterization of some 2-(N-Benzoyl-N-pyrid-4-yl
amino-benzyl)-aminobarbituric acids via Schiff’s bases. Hadh
Studies Res. 4:37–49. 2003.
|
16
|
Al-Douh MH, Al-Fatlawy AA and Abid OH:
Synthesis and characterization of some 2-(N-benzoyl-N-pyrid-2-yl
aminobenzyl)-aminobarbituric acids via N-benzylidene
pyridine-2-amines. J Nat Appl Sci. 8:181–194. 2004.
|
17
|
Al-Douh MH, Al-Fatlawy AA and Abid OH:
Synthesis and characterization of 2-(N-benzoyl-N-pyrid-3-yl
aminobenzyl)-aminobarbituric acids via N-benzylidene
pyridine-3-amines. Fac Sci Bull. 16:83–94. 2003.
|
18
|
Al-Douh MH, Hamid SA, Osman H, Ng SL and
Fun HK: 6, 6′-dimethoxy-2, 2′-[m-phenylene
bis(nitrilomethylidyne)]diphenol. Acta Crystallogr. 63:O3570–O3571.
2007.
|
19
|
Al-Douh MH, Hamid SA, Osman H, Kia R and
Fun HK: 2-amino-N-(2-hydroxy-3-methoxybenzylidene) aniline. Acta
Crystallogr. 64:O1201–O1202. 2008.PubMed/NCBI
|
20
|
Stokke T and Steen HB: Multiple binding
modes for Hoechst 33258 to DNA. J Histochem Cytochem. 33:333–338.
1985. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fox KR: Drug-DNA Interaction Protocols.
Humana Press; NJ: 1997, View Article : Google Scholar
|
22
|
Jenkins TC: Optical absorbance and
fluorescence techniques for measuring DNA-drug interactions.
Drug-DNA Interaction Protocols. 90. Fox KR: Humana Press; NJ: pp.
195–218. 1997, View Article : Google Scholar : PubMed/NCBI
|
23
|
Morgan AR, Lee JS, Pulleyblank DE, Murray
NL and Evans DH: Ethidium fluorescence assays. Part 1.
Physicochemical studies. Nucleic Acids Res. 7:1979.PubMed/NCBI
|
24
|
Roche CJ, Thomson JA and Crothers DM: Site
selectivity of daunomycin. Biochemistry. 33:926–935. 1994.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Haq I, Lincoln P, Suh D, Norden B,
Chowdhry BZ and Chaires JB: Interaction of .delta.- and
.lambda.-[Ru(phen)2DPPZ]2+ with DNA: a calorimetric and equilibrium
binding study. J Am Chem Soc. 117:4788–4796. 1995.
|
26
|
Chaires JB, Dattagupta N and Crothers DM:
Studies on interaction of anthracycline antibiotics and
deoxyribonucleic acid: equilibrium binding studies on the
interaction of daunomycin with deoxyribonucleic acid. Biochemistry.
21:3933–3940. 1982. View Article : Google Scholar : PubMed/NCBI
|
27
|
Peberdya JC, Malinab J, Khalidc S, Hannond
MJ and Rodger A: Influence of surface shape on DNA binding of
bimetallo helicates. J Inorg Biochem. 101:1937–1945. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Mosmann T: Rapid colorimetric assay for
cellular growth and survival: application toproliferation and
cytotoxicity assays. J Immunol Methods. 65:55–63. 1983. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pjura PE, Greskowiak K and Dickerson RE:
Binding of Hoechst 33258 to the minor groove of B-DNA. J Mol Biol.
197:257–271. 1987. View Article : Google Scholar : PubMed/NCBI
|
30
|
Accelrys Inc.: Insight II Journal.
2000.
|
31
|
Marrone TJ, Luty BA and Rose PW:
Discovering high-affinity ligands from the computationally
predicted structures and affinities of small molecules bound to a
target: a virtual screening approach. Perspect Drug Discov Design.
20:209–220. 2000. View Article : Google Scholar
|
32
|
Mehler El and Solmajer T: Electrostatic
effects in proteins: Comparison of dielectric and charge models.
Protein Engineering. 4:903–910. 1991. View Article : Google Scholar : PubMed/NCBI
|
33
|
Morris GM, Goodsell DS, Halliday RS, et
al: Automated docking using a Lamarckian genetic algorithm and an
empirical binding free energy function. J Comput Chem.
19:1639–1662. 1998. View Article : Google Scholar
|
34
|
Kulys J and Ziemys A: A role of proton
transfer in peroxide-catalyzed process elucidated by substrates
docking calculation. BMC Struct Biol. 1:1–6. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Satyanarayana S, Dabrowik JC and Chaires
JB: Tris (phenanthroline) ruthenium (II) enantiomer interactions
with DNA: Mode and specificity of binding. Biochemistry.
32:2573–2584. 1993. View Article : Google Scholar : PubMed/NCBI
|
36
|
Neidle S: Nucleic acid Structure and
Recognition. Oxford University Press; New York, NY: 2002
|
37
|
Constant J-F and Demeunynck M: Design and
studies of a basic targeting drugs. Small Molecule DNA and RNA
Binders: from synthesis to nucleic acid complex. Demeunynck M,
Bailly C and Wilson WD: Wiley-VCH; Weinheim: 2. pp. 2472003
|
38
|
Chen Y-H, Yang Y and Lown JW: Design of
distamicin analogues to probe the physical origin of the
antiparallel side by side oligopeptide binding motif in DNA minor
groove recognition. Biochem Biophys Res Commun. 220:213–218. 1996.
View Article : Google Scholar : PubMed/NCBI
|