1
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sehgal A: Molecular changes during the
genesis of human gliomas. Semin Surg Oncol. 14:3–12. 1998.
View Article : Google Scholar
|
3
|
Shapiro WR: Current therapy for brain
tumors: back to the future. Arch Neurol. 56:429–432. 1999.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Chang HM and But PH: Pharmacology and
applications of Chinese Materia Medica. 1. World Scientific
Publishers; Singapore: pp. 878–880. 1986
|
5
|
Haraguchi H, Ishikawa H, Shirataki N and
Fukuda A: Antiperoxidative activity of neolignans from magnolia
obovata. J Pharm Pharmacol. 49:209–212. 1997. View Article : Google Scholar
|
6
|
Kuribara H, Stavinoha WB and Maruyama Y:
Behavioural pharmacological characteristics of honokiol, an
anxiolytic agent present in extracts of Magnolia bark, evaluated by
an elevated plus-maze test in mice. J Pharm Pharmacol. 50:819–826.
1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Maruyama Y, Kuribara H, Morita M,
Yuzurihara M and Weintraub ST: Identification of magnolol and
honokiol as anxiolytic agents in extracts of saiboku-to, an
oriental herbal medicine. J Nat Prod. 61:135–138. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kuribara H, Stavinoha WB and Maruyama Y:
Honokiol, a putative anxiolytic agent extracted from magnolia bark,
has no diazepam-like side-effects in mice. J Pharm Pharmacol.
51:97–103. 1999.PubMed/NCBI
|
9
|
Kuribara H, Kishi E, Kimura M, Weintraub
ST and Maruyama Y: Comparative assessment of the anxiolytic-like
activities of honokiol and derivatives. Pharmacol Biochem Behav.
67:597–601. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Watanabe K, Watanabe H, Goto Y, Yamaguchi
M, Yamamoto N and Hagino K: Pharmacological properties of magnolol
and honokiol extracted from Magnolia officinalis: central
depressant effects. Planta Med. 49:103–108. 1983. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liou KT, Shen YC, Chen CF, Tsao CM and
Tsai SK: Honokiol protects rat brain from focal cerebral
ischemia-reperfusion injury by inhibiting neutrophil infiltration
and reactive oxygen species production. Brain Res. 992:159–166.
2003. View Article : Google Scholar
|
12
|
Hibasami H, Achiwa Y, Katsuzaki H, Imai K,
Yoshioka K, Nakanishi K, Ishii Y, Hasegawa M and Komiya T: Honokiol
induces apoptosis in human lymphoid leukemia molt 4B cells. Int J
Mol Med. 2:671–673. 1998.PubMed/NCBI
|
13
|
Yang SE, Hsieh MT, Tsai TH and Hsu SL:
Downmodulation of Bcl-XL, release of cytochrome c
and sequential activation of caspases during honokiol induced
apoptosis in human squamous lung cancer CH27 cells. Biochem
Pharmacol. 63:1641–1651. 2002.PubMed/NCBI
|
14
|
Wang T, Chen F, Chen Z, Wu YF, Xu XL,
Zheng S and Hu X: Honokiol induces apoptosis through
p53-independent pathway in human colorectal cell line RKO. World J
Gastroenterol. 10:2205–2208. 2004.PubMed/NCBI
|
15
|
Hirano T, Gotoh M and Oka K: Natural
flavonoids and lignans are potent cytostatic agents against human
leukemic HL-60 cells. Life Sci. 55:1061–1069. 1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Crane C, Panner A, Pieper RO, Arbiser J
and Parsa AT: Honokiol-mediated inhibition of PI3K/mTOR pathway: a
potential strategy to overcome immunoresistance in glioma, breast,
and prostate carcinoma without impacting T cell function. J
Immunother. 32:585–592. 2009. View Article : Google Scholar
|
17
|
Wang X, Duan X, Yang G, Zhang X, Deng L,
Zheng H, Deng C, Wen J, Wang N, Peng C, Zhao X, Wei Y and Chen L:
Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in
rat 9L intracerebral gliosarcoma model and human U251 xenograft
glioma model. PLoS One. 6:e184902011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fox SB, Turner GD, Gatter KC and Harris
AL: The increased expression of adhesion molecules ICAM-3,
E-selectin and P-selectins on breast cancer endothelium. J Pathol.
177:369–376. 1995. View Article : Google Scholar : PubMed/NCBI
|
19
|
Christiansen I, Sundstrom C, Enblad G and
Totterman TH: Soluble vascular cell adhesion molecule-1 (sVCAM-1)
is an independent prognostic marker in Hodgkin’s disease. Br J
Haematol. 102:701–709. 1998.
|
20
|
Christiansen I, Sundstrom C and Totterman
TH: Elevated serum levels of soluble vascular cell adhesion
molecule-1 (sVCAM-1) closely reflect tumour burden in chronic
B-lymphocytic leukaemia. Br J Haematol. 103:1129–1137. 1998.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang X, Clowes C, Duarte R and Pu QQ:
Serum ICAM-1 concentrations following conventional dose
consolidation chemotherapy for acute myeloid leukemia and after
high dose chemotherapy with autologous haematopoietic stem cell
rescue. Int J Oncol. 17:591–595. 2000.PubMed/NCBI
|
22
|
Maeda K, Kang SM, Sawada T, Nishiguchi Y,
Yashiro M, Ogawa Y, Ohira M, Ishikawa T, Hirakawa YS and Chung CK:
Expression of intercellular adhesion molecule-1 and prognosis in
colorectal cancer. Oncol Rep. 9:511–514. 2002.PubMed/NCBI
|
23
|
Becker JC, Dummer R, Hartmann AA, Burg G
and Schmidt RE: Shedding of ICAM-1 from human melanoma cell lines
induced by IFN-gamma and tumor necrosis factor-alpha. Functional
consequences on cell-mediated cytotoxicity. J Immunol.
147:4398–4401. 1991.
|
24
|
Osborn L, Hession C, Tizard R, Vassallo C,
Luhowskyj S, Chi-Rosso G and Lobb R: Direct expression cloning of
vascular cell adhesion molecule-1, a cytokine-induced endothelial
protein that binds to lymphocytes. Cell. 59:1203–1211. 1989.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Springer TA: Traffic signal for lymphocyte
recirculation and leukocyte emigration: the multistep paradigm.
Cell. 76:301–314. 1994. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim HJ, Tsoy I, Park JM, Chung JI, Shin SC
and Chang KC: Anthocyanins from soybean seed coat inhibit the
expression of TNF-α-induced genes associated with
ischemia/reperfusion in endothelial cell by NF-κB-dependent pathway
and reduce rat myocardial damages incurred by ischemia and
reperfusion in vivo. FEBS Lett. 580:1391–1397. 2006.PubMed/NCBI
|
27
|
Nizamutdinova IT, Oh HM, Min YN, Park SH,
Lee MJ, Kim JS, Yean MH, Kang SS, Kim YS, Chang KC and Kim HJ:
Paeonol suppresses intercellular adhesion molecule-1 expression in
tumor necrosis factor-α-stimulated human umbilical vein endothelial
cells by blocking p38, ERK and nuclear factor-κB signaling
pathways. Int Immunopharmacol. 7:343–350. 2007.PubMed/NCBI
|
28
|
Zhang GJ and Adachi I: Serum levels of
soluble intercellular adhesion molecule-1 and E-selectin in
metastatic breast carcinoma: correlations with clinicopathological
features and prognosis. Int J Oncol. 14:71–77. 1999.
|
29
|
Thompson EW and Price JT: Mechanisms of
tumour invasion and metastasis: emerging targets for therapy.
Expert Opin Ther Targets. 6:217–233. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Balkwill F and Mantovani A: Inflammation
and cancer: back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nizamutdinova IT, Lee GW, Lee JS, Cho MK,
Son KH, Jeon SJ, Kang SS, Kim YS, Lee JH, Seo HG, Chang KC and Kim
HJ: Tanshinone I suppresses growth and invasion of human breast
cancer cells, MDA-MB-231, through regulation of adhesion molecules.
Carcinogenesis. 29:1885–1892. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Goping IS, Gross A, Lavoie JN, Nguyen M,
Jemmerson R, Roth K, Korsmeyer SJ and Shore GC: Regulation
targeting of BAX to mitochondria. J Cell Biol. 143:207–215. 1998.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kuwana T and Newmeyer DD: Bcl-2 family
proteins and the role of mitochondria in apoptosis. Curr Opin Cell
Biol. 15:691–699. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wei MC, Zong WX, Cheng EH, Lindsten T,
Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and
Koresmeyer SJ: Proapoptotic BAX and BAK: a requisite gateway to
mitochondrial dysfunction and death. Science. 292:727–730. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Klemke M, Weschenfelder T, Konstandin MH
and Samstag Y: High affinity interaction of integrin alpha4beta1
(VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances
migration of human melanoma cells across activated endothelial cell
layers. J Cell Physiol. 212:368–374. 2007. View Article : Google Scholar
|
36
|
Wu TC: The role of vascular cell adhesion
molecule-1 in tumor immune evasion. Cancer Res. 67:6003–6006. 2007.
View Article : Google Scholar : PubMed/NCBI
|