Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review)
- Authors:
- Alessandro Allegra
- Andrea Alonci
- Salvatore Campo
- Giuseppa Penna
- Annamaria Petrungaro
- Demetrio Gerace
- Caterina Musolino
-
Affiliations: Division of Hematology, University of Messina, I-98125 Messina, Italy, Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, I-98125 Messina, Italy - Published online on: October 1, 2012 https://doi.org/10.3892/ijo.2012.1647
- Pages: 1897-1912
This article is mentioned in:
Abstract
Setoyama T, Ling H, Natsugoe S and Calin GA: Non-coding RNAs for medical practice in oncology. Keio J Med. 60:106–113. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carninci P, Kasukawa T, Katayama S, et al: The transcriptional landscape of the mammalian genome. Science. 309:1559–1563. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S and Gingeras TR: Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 15:987–997. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Taft RJ, Pang KC, Mercer TR, Dinger M and Mattick JS: Non-coding RNAs: regulators of disease. J Pathol. 220:126–139. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer meta-stasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP and Chen CZ: Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 5:396–400. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ and Qi Y: A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev. 21:1190–1203. 2007. View Article : Google Scholar | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
Borchert GM, Lanier W and Davidson BL: RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 13:1097–1101. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu HY, Yan Z, Xu Y, et al: Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics. 10:4132009. View Article : Google Scholar : PubMed/NCBI | |
Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fiorucci G, Chiantore MV, Mangino G, Percario ZA, Affabris E and Romeo G: Cancer regulator microRNA: potential relevance in diagnosis, prognosis and treatment of cancer. Curr Med Chem. 19:461–474. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zen K and Zhang CY: Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 32:326–348. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weber JA, Baxter DH, Zhang S, et al: The microRNA spectrum in 12 body fluids. Clin Chem. 56:1733–1741. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang S, Weber J, Baxter D and Galas DJ: Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38:7248–7259. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA and Kayser M: MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 124:217–226. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hanson EK, Lubenow H and Ballantyne J: Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 387:303–314. 2009. View Article : Google Scholar : PubMed/NCBI | |
Weickmann JL and Glitz DG: Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem. 257:8705–8710. 1982.PubMed/NCBI | |
Gibbings DJ, Ciaudo C, Erhardt M and Voinnet O: Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 11:1143–1149. 2009. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Iguchi H, Kosaka N and Ochiya T: Secretory microRNAs as a versatile communication tool. Commun Integr Biol. 3:478–481. 2010. View Article : Google Scholar : PubMed/NCBI | |
Camussi G, Deregibus MC, Bruno S, Cantaluppi V and Biancone L: Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78:838–848. 2010. View Article : Google Scholar : PubMed/NCBI | |
Muralidharan-Chari V, Clancy JW, Sedgwick A and D’Souza-Schorey C: Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 123:1603–1611. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK and Calin GA: MicroRNAs in body fluids - the mix of hormones and biomarkers. Nat Rev Clin Oncol. 8:467–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Etheridge A, Lee I, Hood L, Galas D and Wang K: Extracellular microRNA: a new source of biomarkers. Mutat Res. 717:85–90. 2011.PubMed/NCBI | |
Skog J, Wurdinger T, van Rijn S, et al: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hunter MP, Ismail N, Zhang X, et al: Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 3:e36942008. View Article : Google Scholar : PubMed/NCBI | |
Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG and Alevizos I: Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16:34–38. 2010.PubMed/NCBI | |
Dimov I, Velickovic L and Stefanovic V: Urinary exosomes. Sci World J. 9:1107–1118. 2009. View Article : Google Scholar | |
Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G and Hivroz C: TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol. 168:3235–3241. 2002. View Article : Google Scholar : PubMed/NCBI | |
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172. 1996. View Article : Google Scholar : PubMed/NCBI | |
Thery C, Regnault A, Garin J, et al: Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 147:599–610. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mears R, Craven RA, Hanrahan S, et al: Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics. 4:4019–4031. 2004. View Article : Google Scholar : PubMed/NCBI | |
O’Neill HC and Quah BJ: Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci Signal. 1:82008.PubMed/NCBI | |
Taylor DD and Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI | |
Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W and Geuze HJ: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 113:3365–3374. 2000.PubMed/NCBI | |
Huber V, Filipazzi P, Iero M, Fais S and Rivoltini L: More insights into the immunosuppressive potential of tumor exosomes. J Transl Med. 6:632008. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Poliakov A, Liu C, et al: Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 124:2621–2633. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vallhov H, Gutzeit C, Johansson SM, et al: Exosomes containing glycoprotein 350 released by EBV-transformed B cells selectively target B cells through CD21 and block EBV infection in vitro. J Immunol. 186:73–82. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Todd NW, Zhang H, et al: Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest. 91:579–587. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PS, Parkin RK, Kroh EM, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gilad S, Meiri E, Yogev Y, et al: Serum microRNAs are promising novel biomarkers. PLoS One. 3:e31482008. View Article : Google Scholar : PubMed/NCBI | |
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y and Ochiya T: Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 285:17442–17452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Turchinovich A, Weiz L, Langheinz A and Burwinkel B: Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39:7223–7233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Ba Y, Ma L, et al: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18:997–1006. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li J, Smyth P, Flavin R, et al: Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap-frozen cells. BMC Biotechnol. 7:362007. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Todd NW, Liu Z, Zhan M and Fang H: Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 67:170–176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tsujiura M, Ichikawa D, Komatsu S, et al: Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 102:1174–1179. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Huang D, Ni S, Peng Z, Sheng W and Du X: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 127:118–126. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xi Y, Nakajima G, Gavin E, et al: Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA. 13:1668–1674. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schöler N, Langer C and Kuchenbauer F: Circulating microRNAs as biomarkers - true blood? Genome Med. 3:722011.PubMed/NCBI | |
Wang G, Tam LS, Li EK, et al: Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 20:493–500. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaoqing Y, Ruxin Z, Guojun L, Zhiqiang Y, Hua H, Shudong Y and Jie Z: Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy. 25:242–246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zahm AM, Thayu M, Hand NJ, Horner A, Leonard MB and Friedman JR: Circulating microRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 53:26–33. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Guo NJ, Tian H, et al: Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 17:241–250. 2011.PubMed/NCBI | |
Zampetaki A, Kiechl S, Drozdov I, et al: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 107:810–817. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karolina DS, Armugam A, Tavintharan S, Wong MTK, Lim SC, Sum CF and Jeyase K: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLos One. 6:e228392011. View Article : Google Scholar : PubMed/NCBI | |
Cogswell JP, Ward J, Taylor IA, et al: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 14:27–41. 2008. | |
Geekiyanage H, Jicha GA, Nelson PT and Chan C: Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol. 235:491–496. 2012. | |
Beveridge NJ and Cairns MJ: MicroRNA dysregulation in schizophrenia. Neurobiol Dis. 46:263–271. 2012. View Article : Google Scholar | |
Mizuno H, Nakamura A, Aoki Y, et al: Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One. 6:e183882011. View Article : Google Scholar : PubMed/NCBI | |
Laterza OF, Lim L, Garrett-Engele PW, et al: Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 55:1977–1983. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Zhao J, Evan G, Xiao C, Cheng Y and Xiao J: Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med (Berl). 90:865–875. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Guo L, Wu Q, Lu J, Ge Q and Lu Z: A comprehensive survey of maternal plasma miRNAs expression profiles using high-throughput sequencing. Clin Chim Acta. 413:568–576. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chim SS, Shing TK, Hung EC, et al: Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 54:482–490. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gunel T, Zeybek YG, Akçakaya P, Kalelioğlu I, Benian A, Ermis H and Aydinli K: Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res. 10:4034–4040. 2011. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Sevignani C, Dumitru CD, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE and Hoon DS: Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 57:84–91. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cho WC: MicroRNAs in cancer-from research to therapy. Biochim Biophys Acta. 1805:209–217. 2010.PubMed/NCBI | |
Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 42:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chan JA, Krichevsky AM and Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV, Ferracin M, Liu CG, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI | |
Markou A, Tsaroucha EG, Kaklamanis L, et al: Prognostic value of mature microRNA-21 and microRNA-205 overexpression in nonsmall cell lung cancer by quantitative real-time RT-PCR. Clin Chem. 54:1696–1704. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schetter AJ, Leung SY, Sohn JJ, et al: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 299:425–436. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang YS, Dai Y, Yu XF, et al: Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol. 23:87–94. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ladeiro Y, Couchy G, Balabaud C, et al: MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 47:1955–1963. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bandrés E, Cubedo E, Agirre X, et al: Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 5:292006.PubMed/NCBI | |
Slaby O, Svoboda M, Fabian P, et al: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 72:397–402. 2007. View Article : Google Scholar : PubMed/NCBI | |
Motoyama K, Inoube H, Takatsuno Y, et al: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 34:1069–1075. 2009.PubMed/NCBI | |
Wang CJ, Zhou ZG, Wang L, et al: Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers. 26:27–34. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yan LIX, Huang XF, Shao Q, et al: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S, Reinhardt F, Benaich N, et al: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 137:1032–1046. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Miao Y, Xiao B, et al: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI | |
Veerla S, Lindgren D, Kvist A, et al: MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 124:2236–2242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rosenfeld N, Aharonov R, Meiri E, et al: MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 26:462–469. 2008. View Article : Google Scholar : PubMed/NCBI | |
He JF, Luo YM, Wan XH and Jiang D: Biogenesis of miRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J Biochem Mol Toxicol. 25:404–408. 2011. View Article : Google Scholar : PubMed/NCBI | |
Donzelli S, Fontemaggi G, Fazi F, et al: MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ. 19:1038–1048. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yin R, Bao W, Xing Y, Xi T and Gou S: MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression of endothelial cells. Biochem Biophys Res Commun. 417:771–776. 2012. View Article : Google Scholar : PubMed/NCBI | |
Enkelmann A, Heinzelmann J, von Eggeling F, et al: Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer. J Cancer Res Clin Oncol. 137:751–759. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schaar DG, Medina DJ, Moore DF, Strair RK and Ting YI: miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. Exp Hematol. 37:245–255. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ichimi T, Enokida H, Okuno Y, et al: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 125:345–352. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chiyomaru T, Enokida H, Tatarano S, et al: miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 102:883–891. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ostenfeld MS, Bramsen JB, Lamy P, et al: miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 29:1073–1084. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aprelikova O, Yu X, Palla J, et al: The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rana TM: Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 8:23–36. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bullock MD, Sayan AE, Packham GK and Mirnezami AH: microRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell. 104:3–12. 2012. View Article : Google Scholar : PubMed/NCBI | |
Avila-Moreno F, Urrea F and Ortiz-Quintero B: MicroRNAs in diagnosis and prognosis in lung cancer. Rev Invest Clin. 63:516–535. 2011.PubMed/NCBI | |
Segura MF, Belitskaya-Lévy I, Rose AE, et al: Melanoma microRNA signature predicts post-recurrence survival. Clin Cancer Res. 16:1577–1586. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu SL, Chen HY, Chang GC, et al: MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell. 13:48–57. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou N and Mo YY: Roles of microRNAs in cancer stem cells. Front Biosci. 4:810–818. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ho AS, Huang X, Cao H, et al: Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol. 3:109–113. 2010. View Article : Google Scholar : PubMed/NCBI | |
Resnick KE, Alder H, Hagan JP, et al: The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 112:55–59. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ng EK, Chong WW, Jin H, et al: Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wentz-Hunter KK and Potashkin JA: The role of miRNAs as key regulators in the neoplastic microenvironment. Mol Biol Int. 2011:8398722011.PubMed/NCBI | |
Kosaka N, Iguchi H and Ochiya T: Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roth C, Rack B, Muller V, Janni W, Pantel K and Schwarzenbach H: Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 12:R902010. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z and Jiang F: Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 127:2870–2878. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xing L, Todd NW, Yu L, Fang H and Jiang F: Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol. 8:1157–1164. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pezzolesi MG, Platzer P, Waite KA and Eng C: Differential expression of PTEN-targeting microRNAs miR-19a and miR-21 in Cowden syndrome. Am J Hum Genet. 82:1141–1149. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI | |
Du Rieu MC, Torrisani J, Selves J, et al: MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin Chem. 56:603–612. 2010.PubMed/NCBI | |
Zhang HL, Yang LF, Zhu Y, et al: Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 71:326–331. 2011. View Article : Google Scholar | |
Shen J, Liu Z, Todd NW, et al: Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer. 11:3742011. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Gao W, Zhu CJ, Liu YQ, Mei Z, Cheng T and Shu YQ: Identification of plasma micro-RNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer. 30:407–414. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oh HK, Tan AL, Das K, et al: Genomic loss of miR-486 regulates tumor progression and the OLFM4 anti-apoptotic factor in gastric cancer. Clin Cancer Res. 17:2657–2667. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mees ST, Mardin WA, Sielker S, et al: Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol. 16:2339–2350. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bansal A, Lee IH, Hong X, et al: Feasibility of microRNAs as biomarkers for Barrett’s esophagus progression: a pilot cross-sectional, phase 2 biomarker study. Am J Gastroenterol. 106:1055–1063. 2011.PubMed/NCBI | |
Huang X, Ding L, Bennewith KL, et al: Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 35:856–867. 2009. View Article : Google Scholar : PubMed/NCBI | |
Roth C, Kasimir-Bauer S, Pantel K and Schwarzenbach H: Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. Mol Oncol. 5:281–291. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zheng D, Haddadin S, Wang Y, Gu LQ, Perry MC, Freter CE and Wang MX: Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 4:575–586. 2011.PubMed/NCBI | |
Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED and Harris CC: Circulating microRNA expression profiles in early stage non-small cell lung cancer. Int J Cancer. 130:1378–1386. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bianchi F, Nicassio F, Marzi M, et al: A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med. 3:495–503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bockmeyer CL, Christgen M, Müller M, et al: MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat. 130:735–745. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blenkiron C, Goldstein LD, Thorne NP, et al: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8:2142007. View Article : Google Scholar : PubMed/NCBI | |
Adams BD, Guttilla IK and White BA: Involvement of microRNAs in breast cancer. Semin Reprod Med. 26:522–536. 2008. View Article : Google Scholar : PubMed/NCBI | |
Enerly E, Steinfeld I, Kleivi K, et al: miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One. 6:e169152011. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yao H, Zhu P, et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tavazoie SF, Alarcón C, Oskarsson T, et al: Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 451:147–152. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hurteau GJ, Carlson JA, Spivack SD and Brock GJ: Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 67:7972–7976. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bertos NR and Park M: Breast cancer - one term, many entities? J Clin Invest. 121:3789–3796. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heneghan HM, Miller N and Kerin MJ: Circulating microRNAs: promising breast cancer. Breast Cancer Res. 13:4022011. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A and Ratajczak MZ: Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 20:1487–1495. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ohshima K, Inoue K, Fujiwara A, et al: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI | |
Gourzones C, Gelin A, Bombik I, et al: Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J. 7:2712010. View Article : Google Scholar : PubMed/NCBI | |
Luo SS, Ishibashi O, Ishikawa G, et al: Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod. 81:717–729. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Chen J, Su F, et al: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 10:1172011. View Article : Google Scholar : PubMed/NCBI | |
Sarasin-Filipowicz M, Krol J, Markiewicz I, Heim MH and Filipowicz W: Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat Med. 15:31–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morita K, Taketomi A, Shirabe K, et al: Clinical significance and potential of hepatic microRNA-122 expression in hepatitis C. Liver Int. 31:474–484. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang S, Marzolf B, et al: Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA. 106:4402–4407. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jia Y, Zheng R, et al: Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem. 56:1830–1838. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Wu C, Che X, et al: Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 50:136–142. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tomimaru Y, Eguchi H, Nagano H, et al: Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 56:167–175. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cermelli S, Ruggieri A, Marrero JA, Ioannou GN and Beretta L: Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 6:e239372011. View Article : Google Scholar : PubMed/NCBI | |
Qi P, Cheng SQ, Wang H, Li N, Chen YF and Gao CF: Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One. 6:e284862011. View Article : Google Scholar : PubMed/NCBI | |
Ikeda Y, Tanji E, Makino N, Kawata S and Furukawa T: MicroRNAs associated with mitogen-activated protein kinase in human pancreatic cancer. Mol Cancer Res. 10:259–269. 2012. View Article : Google Scholar : PubMed/NCBI | |
Habbe N, Koorstra J, Mendell J, et al: MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 8:340–346. 2009. View Article : Google Scholar : PubMed/NCBI | |
La Conti JL, Shivapurkar N, Preet A, et al: Tissue and serum microRNAs in the KrasG12D transgenic animal model and in patients with pancreatic cancer. PLoS One. 6:e206872011.PubMed/NCBI | |
Morimura R, Komatsu S, Ichikawa D, et al: Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer. 105:1733–1740. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Chen X, Du Y, et al: Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem. 58:610–618. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hwang JH, Voortman J, Giovannetti E, et al: Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One. 5:e106302010. View Article : Google Scholar : PubMed/NCBI | |
Shigehara K, Yokomuro S, Ishibashi O, et al: Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One. 6:e235842011. View Article : Google Scholar : PubMed/NCBI | |
Komatsu S, Ichikawa D, Takeshita H, et al: Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 105:104–111. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chiang Y, Zhou X, Wang Z, et al: Expression levels of microRNA-192 and -215 in gastric carcinoma. Pathol Oncol Res. 18:585–591. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang J, Wu J, et al: MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur J Cancer. [Epub ahead of print]. 2011.PubMed/NCBI | |
Liu H, Zhu L, Liu B, et al: Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 316:196–203. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wu G, Lv L, et al: MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis. 33:519–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nugent M, Miller N and Kerin MJ: MicroRNAs in colorectal cancer: function, dysregulation and potential as novel biomarkers. Eur J Surg Oncol. 37:649–654. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Zhang L, Cogdell DE, et al: Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 6:e177452011. View Article : Google Scholar : PubMed/NCBI | |
Wulfken LM, Moritz R, Ohlmann C, et al: MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 6:e257872011. View Article : Google Scholar : PubMed/NCBI | |
Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Müller SC and Ellinger J: Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 77:9–16. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A and Anderson B: Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 4:e62292009. View Article : Google Scholar : PubMed/NCBI | |
Brase JC, Johannes M, Schlomm T, et al: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 128:608–616. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moltzahn F, Olshen AB, Baehner L, et al: Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 71:550–560. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wach S, Nolte E, Szczyrba J, et al: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer. 130:611–621. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kuwabara Y, Ono K, Horie T, et al: Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate the existence of myocardial damage. Circ Cardiovasc Genet. 4:446–454. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanke M, Hoefig K, Merz H, et al: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 28:655–661. 2010. View Article : Google Scholar : PubMed/NCBI | |
Selth LA, Townley S, Gillis JL, et al: Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer. 131:652–661. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gonzales JC, Fink LM, Goodman OB Jr, Symanowski JT, Vogelzang NJ and Ward DC: Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer. 9:39–45. 2011. View Article : Google Scholar | |
Lin SC, Liu CJ, Lin JA, et al: miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol. 46:204–208. 2010. View Article : Google Scholar : PubMed/NCBI | |
Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E and Wong DT: Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 15:5473–5477. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lawrie CH, Gal S, Dunlop HM, et al: Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheng AM, Byrom MW, Shelton J and Ford LP: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33:1290–1297. 2005. View Article : Google Scholar : PubMed/NCBI | |
Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY: miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2006. | |
Stamatopoulos B, Meuleman N, Haibe-Kains B, et al: MicroRNA29c and microRNA-223 downregulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood. 113:5237–5245. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moussay E, Wang K, Cho JH, et al: MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 108:6573–6578. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fulci V, Chiaretti S, Goldoni M, et al: Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 109:4944–4951. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang J and Mo YY: Role of microRNAs in leukemia stem cells. Front Biosci (Schol Ed). 4:799–809. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu YD, Wang L, Sun C, et al: Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia. Med Oncol. [Epub ahead of print]. 2011. | |
Tanaka M, Oikawa K, Takanashi M, et al: Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One. 4:e55322009. View Article : Google Scholar : PubMed/NCBI | |
Aqeilan RI, Calin GA and Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17:215–220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cammarata G, Augugliaro L, Salemi D, et al: Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am J Hematol. 85:331–339. 2010.PubMed/NCBI | |
Tsang WP and Kwok TT: Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 13:1215–1222. 2008. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Dumitru CD, Shimizu M, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pons A, Nomdedeu B, Navarro A, et al: Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 50:1854–1859. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zuo Z, Calin GA, De Paula HM, et al: Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood. 118:413–415. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang JJ, Yu J, Li JY, Liu YT and Zhong RQ: Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol. [Epub ahead of print]. 2012.PubMed/NCBI | |
Yu DC, Li QG, Ding LXW and Ding YT: Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci. 12:2055–2063. 2011. View Article : Google Scholar : PubMed/NCBI | |
Duttagupta R, Jiang R, Gollub J, Getts RC and Jones KE: Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One. 6:e207692011. View Article : Google Scholar : PubMed/NCBI | |
Pritchard CC, Kroh E, Wood B, et al: Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila). 5:492–497. 2012. View Article : Google Scholar : PubMed/NCBI | |
McDonald JS, Milosevic D, Reddi HV, Grebe SK and Algeciras-Schimnich A: Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 57:833–840. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reid G, Kirschner MB and van Zandwijk N: Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 80:193–208. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zheng D, Tan Q, Wang MX and Gu LQ: Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol. 6:668–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Spiegel JC, Lorenzen JM and Thum T: Role of microRNAs in immunity and organ transplantation. Expert Rev Mol Med. 13:e372011. View Article : Google Scholar : PubMed/NCBI | |
Benner SA: Extracellular ‘communicator RNA’. FEBS Lett. 233:225–228. 1988. | |
D’Alessandra Y, Pompilio G and Capogrossi MC: MicroRNAs and myocardial infarction. Curr Opin Cardiol. 27:228–235. 2012. | |
Ha TY: The role of microRNAs in regulatory T cells and in the immune response. Immune Netw. 11:11–41. 2011. View Article : Google Scholar : PubMed/NCBI |