1.
|
Haas GP, Delongchamps N, Brawley OW, Wang
CY and de La Roza G: The worldwide epidemiology of prostate cancer:
perspectives from autopsy studies. Can J Urol. 15:3866–3871.
2008.PubMed/NCBI
|
2.
|
Madu CO and Lu Y: Novel diagnostic
biomarkers for prostate cancer. J Cancer. 1:150–177. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3.
|
Folini M, Gandellini P, Longoni N, et al:
miR-21: an oncomir on strike in prostate cancer. Mol Cancer.
9:122010. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Kojima K, Fujita Y, Nozawa Y, Deguchi T
and Ito M: MiR-34a attenuates paclitaxel-resistance of
hormone-refractory prostate cancer PC3 cells through direct and
indirect mechanisms. Prostate. 70:1501–1512. 2010. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Noonan EJ, Place RF, Basak S, Pookot D and
Li LC: miR-449a causes Rb-dependent cell cycle arrest and
senescence in prostate cancer cells. Oncotarget. 1:349–358.
2010.PubMed/NCBI
|
6.
|
Brase JC, Johannes M, Schlomm T, et al:
Circulating miRNAs are correlated with tumor progression in
prostate cancer. Int J Cancer. 128:608–616. 2011. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Ozen M, Creighton CJ, Ozdemir M and
Ittmann M: Widespread deregulation of microRNA expression in human
prostate cancer. Oncogene. 27:1788–1793. 2008. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Cronauer MV, Schulz WA, Burchardt T, et
al: The androgen receptor in hormone-refractory prostate cancer:
relevance of different mechanisms of androgen receptor signaling
(Review). Int J Oncol. 23:1095–1102. 2003.
|
9.
|
He L and Hannon GJ: MicroRNAs: small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10.
|
Fendler A, Jung M, Stephan C, et al:
miRNAs can predict prostate cancer biochemical relapse and are
involved in tumor progression. Int J Oncol. 39:1183–1192.
2011.PubMed/NCBI
|
11.
|
Gaur A, Jewell DA, Liang Y, et al:
Characterization of microRNA expression levels and their biological
correlates in human cancer cell lines. Cancer Res. 67:2456–2468.
2007. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Porkka KP, Pfeiffer MJ, Waltering KK,
Vessella RL, Tammela TLJ and Visakorpi T: MicroRNA expression
profiling in prostate cancer. Cancer Res. 67:6130–6135. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13.
|
Kelly BD, Miller N, Healy NA, Walsh K and
Kerin MJ: A review of expression profiling of circulating microRNAs
in men with prostate cancer. BJU Int. May 22–2012, (Epub ahead of
print).
|
14.
|
Costello LC and Franklin RB: Zinc is
decreased in prostate cancer: an established relationship of
prostate cancer! J Biol Inorg Chem. 16:3–8. 2011.
|
15.
|
Gumulec J, Masarik M, Krizkova S, et al:
Insight to physiology and pathology of zinc(II) ions and their
actions in breast and prostate carcinoma. Curr Med Chem.
18:5041–5051. 2011. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Beyersmann D and Haase H: Functions of
zinc in signaling, proliferation and differentiation of mammalian
cells. Biometals. 14:331–341. 2001. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Haase I, Evans R, Pofahl R and Watt FM:
Regulation of keratinocyte shape, migration and wound
epithelialization by IGF-1- and EGF-dependent signalling pathways.
J Cell Sci. 116:3227–3238. 2003. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Samet JM, Dewar BJ, Wu WD and Graves LM:
Mechanisms of Zn(2+)-induced signal initiation through the
epidermal growth factor receptor. Toxicol Appl Pharmacol.
191:86–93. 2003.
|
19.
|
Percival MD, Yeh B and Falgueyret JP: Zinc
dependent activation of cAMP-specific phosphodiesterase (PDE4A).
Biochem Biophys Res Commun. 241:175–180. 1997. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Hogstrand C, Kille P, Nicholson RI and
Taylor KM: Zinc transporters and cancer: a potential role for ZIP7
as a hub for tyrosine kinase activation. Trends Mol Med.
15:101–111. 2009. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Yamasaki S, Sakata-Sogawa K, Hasegawa A,
et al: Zinc is a novel intracellular second messenger. J Cell Biol.
177:637–645. 2007. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Feng P, Li TL, Guan ZX, Franklin RB and
Costello LC: The involvement of Bax in zinc-induced mitochondrial
apoptogenesis in malignant prostate cells. Mol Cancer. 7:252008.
View Article : Google Scholar : PubMed/NCBI
|
23.
|
Huynh H: Induction of apoptosis in rat
ventral prostate by finasteride is associated with alteration in
MAP kinase pathways and Bcl-2 related family of proteins. Int J
Oncol. 20:1297–1303. 2002.PubMed/NCBI
|
24.
|
Eckschlager T, Adam V, Hrabeta J, Figova K
and Kizek R: Metallothioneins and cancer. Curr Protein Pept Sci.
10:360–375. 2009. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Eide DJ: Zinc transporters and the
cellular trafficking of zinc. Biochim Biophys Acta. 1763:711–722.
2006. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Sztalmachova M, Hlavna M, Gumulec J, et
al: Effect of zinc(II) ions on the expression of pro- and
anti-apoptotic factors in high-grade prostate carcinoma cells.
Oncol Rep. 28:806–814. 2012.PubMed/NCBI
|
27.
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Cell Oncol. 32:161–162. 2010.
|
28.
|
Bataineh ZM, Hani IHB and Al-Alami JR:
Zinc in normal and pathological human prostate gland. Saudi Med J.
23:218–220. 2002.PubMed/NCBI
|
29.
|
Goel T and Sankhwar SN: Comparative study
of zinc levels in benign and malignant lesions of the prostate.
Scand J Urol Nephrol. 40:108–112. 2006. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Sapota A, Darago A, Taczalski J and
Kilanowicz A: Disturbed homeostasis of zinc and other essential
elements in the prostate gland dependent on the character of
pathological lesions. Biometals. 22:1041–1049. 2009. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Gao P, Tchernyshyov I, Chang TC, et al:
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase
expression and glutamine metabolism. Nature. 458:762–765. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32.
|
Glinsky GV, Krones-Herzig A and Glinskii
AB: Malignancy-associated regions of transcriptional activation:
Gene expression profiling identifies common chromosomal regions of
a recurrent transcriptional activation in human prostate, breast,
ovarian, and colon cancers. Neoplasia. 5:218–228. 2003. View Article : Google Scholar
|
33.
|
Wang Y, Lee ATC, Ma JZI, et al: Profiling
microRNA expression in hepatocellular carcinoma reveals
microRNA-224 up-regulation and apoptosis inhibitor-5 as a
microRNA-224-specific target. J Biol Chem. 283:13205–13215. 2008.
View Article : Google Scholar : PubMed/NCBI
|
34.
|
Prueitt RL, Yi M, Hudson RS, et al:
Expression of microRNAs and protein-coding genes associated with
perineural invasion in prostate cancer. Prostate. 68:1152–1164.
2008. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Szczyrba J, Nolte E, Wach S, et al:
Downregulation of Sec23A protein by miRNA-375 in prostate
carcinoma. Mol Cancer Res. 9:791–800. 2011. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Tsukamoto Y, Nakada C, Noguchi T, et al:
MicroRNA-375 is downregulated in gastric carcinomas and regulates
cell survival by targeting PDK1 and 14-3-3 zeta. Cancer Res.
70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Mathe EA, Nguyen GH, Bowman ED, et al:
microRNA expression in squamous cell carcinoma and adenocarcinoma
of the esophagus: associations with survival. Clin Cancer Res.
15:6192–6200. 2009. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Ladeiro Y, Couchy G, Balabaud C, et al:
microRNA profiling in hepatocellular tumors is associated with
clinical features and oncogene/tumor suppressor gene mutations.
Hepatology. 47:1955–1963. 2008. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Zhang X, Yan Z, Zhang J, et al:
Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for
recurrence risk in gastric cancer patients following surgical
resection. Annal Oncol. 22:2257–2266. 2011. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Simonini PDR, Breiling A, Gupta N, et al:
Epigenetically deregulated microRNA-375 is involved in a positive
feedback loop with estrogen receptor alpha in breast cancer cells.
Cancer Res. 70:9175–9184. 2010. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Ito T, Tachibana M, Yamamoto S, Nakashima
J and Murai M: Expression of estrogen receptor (ER-alpha and
ER-beta) mRNA in human prostate cancer. Eur Urol. 40:557–563. 2001.
View Article : Google Scholar : PubMed/NCBI
|
42.
|
Athanassiadou P, Bantis A, Gonidi M, et
al: The expression of metallothioneins on imprint smears of
prostate carcinoma: correlation with clinicopathologic parameters
and tumor proliferative capacity. Tumori. 93:189–194.
2007.PubMed/NCBI
|
43.
|
Gumulec J, Masarik M, Krizkova S, et al:
Evaluation of alpha-methylacyl-CoA racemase, metallothionein and
prostate specific antigen as prostate cancer prognostic markers.
Neoplasma. 59:191–200. 2012. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Masarik M, Gumulec J, Hlavna M, et al:
Monitoring of the prostate tumour cells redox state and real-time
proliferation by novel biophysical techniques and fluorescent
staining. Integr Biol. 4:672–684. 2012. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Amirghofran Z, Monabati A and Gholijani N:
Apoptosis in prostate cancer: bax correlation with stage. Int J
Urol. 12:340–345. 2005. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Franklin RB, Feng P, Milon B, et al: hZIP1
zinc uptake transporter down regulation and zinc depletion in
prostate cancer. Mol Cancer. 4:322005. View Article : Google Scholar : PubMed/NCBI
|
47.
|
Thiagalingam A, DeBustros A, Borges M, et
al: RREB-1, a novel zinc finger protein, is involved in the
differentiation response to Ras in human medullary thyroid
carcinomas. Mol Cell Biol. 16:5335–5345. 1996.PubMed/NCBI
|
48.
|
Zou J, Milon BC, Desouki MM, Costello LC
and Franklin RB: hZIP1 zinc transporter down-regulation in prostate
cancer involves the overexpression of Ras responsive element
binding protein-1 (RREB-1). Prostate. 71:1518–1524. 2011.PubMed/NCBI
|
49.
|
Hanke M, Hoefig K, Merz H, et al: A robust
methodology to study urine microRNA as tumor marker: microRNA-126
and microRNA-182 are related to urinary bladder cancer. Urol Oncol.
28:655–661. 2010. View Article : Google Scholar : PubMed/NCBI
|
50.
|
Mitchell PS, Parkin RK, Kroh EM, et al:
Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008.
View Article : Google Scholar : PubMed/NCBI
|