1.
|
Khan SA, Thomas HC, Davidson BR and
Taylor-Robinson SD: Cholangiocarcinoma. Lancet. 366:1303–1304.
2005. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Hong K and Geschwind JF: Locoregional:
intra-arterial therapies for unresectable intrahepatic
cholangiocarcinoma. Semin Oncol. 37:110–117. 2010. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Ramage JK, Donaghy A, Farrant JM, Iorns R
and Williams R: Serum tumor markers for the diagnosis of
cholangiocarcinoma in primary sclerosing cholangitis.
Gastroenterology. 108:865–869. 1995. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Schevzov G, Whittaker SP, Fath T, Lin JJ
and Gunning PW: Tropomyosin isoforms and reagents. Bioarchitecture.
1:135–164. 2011. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Lin JJ, Warren KS, Wamboldt DD, Wang T and
Lin JL: Tropomyosin isoforms in non-muscle cells. Int Rev Cytol.
170:1–38. 1997. View Article : Google Scholar
|
6.
|
Bharadwaj S and Prasad L: Tropomyosin-1, a
novel suppressor of cellular transformation is downregulated by
promoter methylation in cancer cells. Cancer Lett. 183:205–213.
2002. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Raval GN, Bharadwaj S, Levine EA,
Willingham MC, Geary RL, Kute T and Prasad GL: Loss of expression
of tropomyosin-1, a novel class II tumor suppressor that induces
anoikis, in primary breast tumors. Oncogene. 22:6194–6203. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8.
|
Pawlak G, McGarvey TW, Nguyen TB,
Tomaszewski JE, Puthiyaveettil R, Malkowicz SB and Helfman DM:
Alterations in tropomyosin isoform expression in human transitional
cell carcinoma of the urinary bladder. Int J Cancer. 110:368–373.
2004. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Yager ML, Hughes JA, Lovicu FJ, Gunning
PW, Weinberger RP and O’Neill GM: Functional analysis of the actin
binding protein, tropomyosin 1, in neuroblastoma. Br J Cancer.
89:860–863. 2003. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Choi C, Kim D, Kim S, Jeong S, Song E and
Helfman DM: From skeletal muscle to cancer: insights learned
elucidating the function of tropomyosin. J Struct Biol. 177:63–69.
2012. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Mahadev K, Raval G, Bharadwaj S, et al:
Suppression of the transformed phenotype of breast cancer by
tropomyosin-1. Exp Cell Res. 279:40–51. 2002. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Bakin AV, Safina A, Rinehart C, Daroqui C,
Darbary H and Helfman DM: A critical role of tropomyosins in
TGF-beta regulation of the actin cytoskeleton and cell motility in
epithelial cells. Mol Biol Cell. 15:4682–4694. 2004. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Xu RF, Sun JP, Zhang SR, et al: KRAS and
PIK3CA but not BRAF genes are frequently mutated in Chinese
cholangiocarcinoma patients. Biomed Pharmacother. 65:22–26. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14.
|
O’Dell MR, Huang JL, Whitney-Miller CL, et
al: Kras(G12D) and p53 mutation cause primary intrahepatic
cholangiocarcinoma. Cancer Res. 15:1557–1567. 2012.PubMed/NCBI
|
15.
|
Imai M and Takahashi N: Growth inhibition
and mechanism of action of p-dodecylaminophenol against refractory
human pancreatic cancer and cholangiocarcinoma. Bioorg Med Chem.
20:2520–2526. 2012. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Jinawath A, Akiyama Y, Sripa B and Yuasa
Y: Dual blockade of the Hedgehog and ERK1/2 pathways coordinately
decreases proliferation and survival of cholangiocarcinoma cells. J
Cancer Res Clin Oncol. 133:271–278. 2007. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Hara M, Akasaka K, Akinaga S, et al:
Identification of Ras farnesyltransferase inhibitors by microbial
screening. Proc Natl Acad Sci USA. 90:2281–2285. 1993. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Nagase T, Kawata S, Tamura S, et al:
Inhibition of cell growth of human hepatoma cell line (Hep G2) by a
farnesyl protein transferase inhibitor: a preferential suppression
of ras farnesylation. Int J Cancer. 65:620–626. 1996. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Kainuma O, Asano T, Hasegawa M, Kenmochi
T, Nakagohri T, Tokoro Y and Isono K: Inhibition of growth and
invasive activity of human pancreatic cancer cells by a
farnesyltransferase inhibitor, manumycin. Pancreas. 15:379–383.
1997. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Ito T, Kawata S, Tamura S, et al:
Suppression of human pancreatic cancer growth in BALB/c nude mice
by manumycin, a farnesyl:protein transferase inhibitor. Jpn J
Cancer Res. 87:113–116. 1996. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Shields JM, Mehta H, Pruitt K and Der CJ:
Opposing roles of the extracellular signal-regulated kinase and p38
mitogen-activated protein kinase cascades in Ras-mediated
downregulation of tropomyosin. Mol Cell Biol. 22:2304–2317. 2002.
View Article : Google Scholar
|
22.
|
Varga AE, Stourman NV, Zheng Q, et al:
Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor
suppressor function of TGF-beta. Oncogene. 24:5043–5052. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23.
|
Liu S, Ren S, Howell P, Fodstad O and
Riker AI: Identification of novel epigenetically modified genes in
human melanoma via promoter methylation gene profiling. Pigment
Cell Melanoma Res. 21:545–558. 2008. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Kawahigashi Y, Mishima T, Mizuguchi Y, et
al: MicroRNA profiling of human intrahepatic cholangiocarcinoma
cell lines reveals biliary epithelial cell-specific microRNAs. J
Nihon Med Sch. 76:188–197. 2009. View Article : Google Scholar
|
25.
|
Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21
targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol
Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Zhu S, Wu H, Wu F, Nie D, Sheng S and Mo
YY: MicroRNA-21 targets tumor suppressor genes in invasion and
metastasis. Cell Res. 18:350–359. 2008. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Li J, Huang H, Sun L, et al: MiR-21
indicates poor prognosis in tongue squamous cell carcinomas as an
apoptosis inhibitor. Clin Cancer Res. 15:3998–4008. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28.
|
Li T, Li D, Sha J, Sun P and Huang Y:
MicroRNA-21 directly targets MARCKS and promotes apoptosis
resistance and invasion in prostate cancer cells. Biochem Biophys
Res Commun. 383:280–285. 2009. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Dong CG, Wu WK, Feng SY, Wang XJ, Shao JF
and Qiao J: Co-inhibition of microRNA-10b and microRNA-21 exerts
synergistic inhibition on the proliferation and invasion of human
glioma cells. Int J Oncol. 41:1005–1012. 2012.PubMed/NCBI
|
30.
|
Schmitz KJ, Lang H, Wohlschlaeger J,
Sotiropoulos GC, Reis H, Schmid KW and Baba HA: AKT and ERK1/2
signaling in intrahepatic cholangiocarcinoma. World J
Gastroenterol. 13:6470–6477. 2007. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Leelawat K, Leelawat S, Narong S and
Hongeng S: Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4
induced cholangiocarcinoma cell invasion. World J Gastroenterol.
13:1561–1568. 2007. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Leelawat K, Narong S, Udomchaiprasertkul
W, Leelawat S and Tungpradubkul S: Inhibition of PI3K increases
oxaliplatin sensitivity in cholangiocarcinoma cells. Cancer Cell
Int. 9:32009. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Menakongka A and Suthiphongchai T:
Involvement of PI3K and ERK1/2 pathways in hepatocyte growth
factor-induced cholangiocarcinoma cell invasion. World J
Gastroenterol. 16:713–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Wu T, Leng J, Han C and Demetris AJ: The
cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt
and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer
Ther. 3:299–307. 2004.PubMed/NCBI
|
35.
|
Matsumoto K, Nagahara T, Okano J and
Murawaki Y: The growth inhibition of hepatocellular and
cholangiocellular carcinoma cells by gemcitabine and the roles of
extracellular signal-regulated and checkpoint kinases. Oncol Rep.
20:863–872. 2008.PubMed/NCBI
|
36.
|
Liu XF, Jiang H, Zhang CS, Yu SP, Wang ZQ
and Su HL: Targeted drug regulation on methylation of p53-BAX
mitochondrial apoptosis pathway affects the growth of
cholangiocarcinoma cells. J Int Med Res. 40:67–75. 2012. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Xu LN, Wang X and Zou SQ: Effect of
histone deacetylase inhibitor on proliferation of biliary tract
cancer cell lines. World J Gastroenterol. 14:2578–2581. 2008.
View Article : Google Scholar : PubMed/NCBI
|
38.
|
Yin P, Zhao C, Li Z, et al: Sp1 is
involved in regulation of cystathionine gamma-lyase gene expression
and biological function by PI3K/Akt pathway in human hepatocellular
carcinoma cell lines. Cell Signal. 24:1229–1240. 2012. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Tang SW, Yang TC, Lin WC, Chang WH, Wang
CC, Lai MK and Lin JY: Nicotinamide N-methyltransferase induces
cellular invasion through activating matrix metalloproteinase-2
expression in clear cell renal cell carcinoma cells.
Carcinogenesis. 32:138–145. 2011. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Meng F, Henson R, Lang M, et al:
Involvement of human micro-RNA in growth and response to
chemotherapy in human cholangiocarcinoma cell line.
Gastroenterology. 130:2113–2129. 2006. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Wehbe H, Henson R, Meng F, Mize-Berge J
and Patel T: Interleukin-6 contributes to growth in
cholangiocarcinoma cells by aberrant promoter methylation and gene
expression. Cancer Res. 66:10517–10524. 2006. View Article : Google Scholar : PubMed/NCBI
|