Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review)
- Authors:
- Yan-Jun Zhong
- Li-Hua Shao
- Yan Li
-
Affiliations: Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China - Published online on: December 28, 2012 https://doi.org/10.3892/ijo.2012.1754
- Pages: 373-383
-
Copyright: © Zhong et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Gianni L, Grasselli G, Cresta S, Locatelli A, Vigano L and Minotti G: Anthracyclines. Cancer Chemother Biol Response Modif. 21:29–40. 2003. View Article : Google Scholar | |
Abu Ajaj K, Graeser R, Fichtner I and Kratz F: In vitro and in vivo study of an albumin-binding prodrug of doxorubicin that is cleaved by cathepsin B. Cancer Chemother Pharmacol. 64:413–418. 2009.PubMed/NCBI | |
Ogura M: Adriamycin (doxorubicin). Gan To Kagaku Ryoho. 28:1331–1338. 2001.(In Japanese). | |
Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P and Ramirez-Tortosa MC: New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem Toxicol. 48:1425–1438. 2010. View Article : Google Scholar : PubMed/NCBI | |
Herman EH, Ferrans VJ, Jordan W and Ardalan B: Reduction of chronic daunorubicin cardiotoxicity by ICRF-187 in rabbits. Res Commun Chem Pathol Pharmacol. 31:85–97. 1981.PubMed/NCBI | |
Wexler LH, Andrich MP, Venzon D, et al: Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol. 14:362–372. 1996.PubMed/NCBI | |
Lipshultz SE: Dexrazoxane for protection against cardiotoxic effects of anthracyclines in children. J Clin Oncol. 14:328–331. 1996.PubMed/NCBI | |
Cattel L, Ceruti M and Dosio F: From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori. 89:237–249. 2003.PubMed/NCBI | |
Li J, Wu C, Dai Y, Zhang R, Wang X, Fu D and Chen B: Doxorubicin-CdS nanoparticles: a potential anticancer agent for enhancing the drug uptake of cancer cells. J Nanosci Nanotechnol. 7:435–439. 2007.PubMed/NCBI | |
Ascensao A, Lumini-Oliveira J, Machado NG, et al: Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Clin Sci. 120:37–49. 2011. View Article : Google Scholar | |
Yeung TK, Hopewell JW, Simmonds RH, et al: Reduced cardiotoxicity of doxorubicin given in the form of N-(2-hydroxypropyl) methacrylamide conjugates: and experimental study in the rat. Cancer Chemother Pharmacol. 29:105–111. 1991. View Article : Google Scholar | |
Shao LH, Liu SP, Hou JX, et al: Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: an experimental study. Cancer. 118:2986–2996. 2011. View Article : Google Scholar | |
Kratz F, Warnecke A, Schmid B, Chung DE and Gitzel M: Prodrugs of anthracyclines in cancer chemotherapy. Curr Med Chem. 13:477–523. 2006. View Article : Google Scholar : PubMed/NCBI | |
Muller MB, Keck ME, Binder EB, et al: ABCB1 (MDR1)-type P-glycoproteins at the blood-brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder. Neuropsychopharmacology. 28:1991–1999. 2003. View Article : Google Scholar | |
Gottesman MM, Fojo T and Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2:48–58. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Yang J and Sega E: Issues related to targeted delivery of proteins and peptides. AAPS J. 8:E466–E478. 2006. View Article : Google Scholar : PubMed/NCBI | |
Juillerat-Jeanneret L and Schmitt F: Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev. 27:574–590. 2007. View Article : Google Scholar : PubMed/NCBI | |
Calderon M, Graeser R, Kratz F and Haag R: Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg Med Chem Lett. 19:3725–3728. 2009. View Article : Google Scholar : PubMed/NCBI | |
Haag R and Kratz F: Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 45:1198–1215. 2006. View Article : Google Scholar : PubMed/NCBI | |
Duncan R: Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 6:688–701. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vicent MJ, Dieudonne L, Carbajo RJ and Pineda-Lucena A: Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv. 5:593–614. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kiick KL: Materials science. Polymer therapeutics. Science. 317:1182–1183. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schilsky RL: Pharmacology and clinical status of capecitabine. Oncology. 14:1297–1306; discussion 1309–1311, 2000. | |
Basu SK: Receptor-mediated endocytosis of macromolecular conjugates in selective drug delivery. Biochem Pharmacol. 40:1941–1946. 1990. View Article : Google Scholar : PubMed/NCBI | |
Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T and Maeda H: Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res. 89:307–314. 1998. View Article : Google Scholar : PubMed/NCBI | |
Shiah JJ, Sun Y, Peterson CM and Kopecek J: Biodistribution of free and N-(2-hydroxypropyl)methacrylamide copolymer-bound mesochlorin e(6) and adriamycin in nude mice bearing human ovarian carcinoma OVCAR-3 xenografts. J Control Release. 61:145–157. 1999. View Article : Google Scholar | |
Bogdanov A Jr, Wright SC, Marecos EM, Bogdanova A, Martin C, Petherick P and Weissleder R: A long-circulating co-polymer in ‘passive targeting’ to solid tumors. J Drug Target. 4:321–330. 1997.PubMed/NCBI | |
Kopecek J, Sprincl L and Lim D: New types of synthetic infusion solutions. I. Investigation of the effect of solutions of some hydrophilic polymers on blood. J Biomed Mater Res. 7:179–191. 1973. View Article : Google Scholar : PubMed/NCBI | |
Sprincl L, Exner J, Sterba O and Kopecek J: New types of synthetic infusion solutions. III. Elimination and retention of poly-[N-(2-hydroxypropyl)methacrylamide] in a test organism. J Biomed Mater Res. 10:953–963. 1976.PubMed/NCBI | |
Etrych T, Kovar L, Strohalm J, Chytil P, Rihova B and Ulbrich K: Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy. J Control Release. 154:241–248. 2011. View Article : Google Scholar : PubMed/NCBI | |
Satchi-Fainaro R, Puder M, Davies JW, et al: Targeting angio-genesis with a conjugate of HPMA copolymer and TNP-470. Nat Med. 10:255–261. 2004. View Article : Google Scholar : PubMed/NCBI | |
Satchi-Fainaro R, Mamluk R, Wang L, et al: Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell. 7:251–261. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kasuya Y, Lu ZR, Kopeckova P, Minko T, Tabibi SE and Kopecek J: Synthesis and characterization of HPMA copolymeraminopropylgeldanamycin conjugates. J Control Release. 74:203–211. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama N, Nori A, Malugin A, Kasuya Y, Kopeckova P and Kopecek J: Free and N-(2-hydroxypropyl)methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Res. 63:7876–7882. 2003. | |
Etrych T, Mrkvan T, Rihova B and Ulbrich K: Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J Control Release. 122:31–38. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vasey PA, Kaye SB, Morrison R, et al: Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemo-therapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res. 5:83–94. 1999. | |
Bilim V: Technology evaluation: PK1, Pfizer/Cancer Research UK. Curr Opin Mol Ther. 5:326–330. 2003.PubMed/NCBI | |
Seymour LW, Ferry DR, Kerr DJ, et al: Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol. 34:1629–1636. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thomson AH, Vasey PA, Murray LS, Cassidy J, Fraier D, Frigerio E and Twelves C: Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br J Cancer. 81:99–107. 1999. View Article : Google Scholar : PubMed/NCBI | |
Julyan PJ, Seymour LW, Ferry DR, et al: Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J Control Release. 57:281–290. 1999. View Article : Google Scholar : PubMed/NCBI | |
Seymour LW, Ferry DR, Anderson D, et al: Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 20:1668–1676. 2002. View Article : Google Scholar : PubMed/NCBI | |
Seymour LW, Ulbrich K, Wedge SR, Hume IC, Strohalm J and Duncan R: N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmacokinetics in DBA2 mice. Br J Cancer. 63:859–866. 1991. View Article : Google Scholar | |
Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JH, et al: Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs. 12:315–323. 2001.PubMed/NCBI | |
Rice JR, Gerberich JL, Nowotnik DP and Howell SB: Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system. Clin Cancer Res. 12:2248–2254. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nowotnik DP and Cvitkovic E: ProLindac (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Adv Drug Deliv Rev. 61:1214–1219. 2009. View Article : Google Scholar : PubMed/NCBI | |
Campone M, Rademaker-Lakhai JM, Bennouna J, Howell SB, Nowotnik DP, Beijnen JH and Schellens JH: Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemother Pharmacol. 60:523–533. 2007. View Article : Google Scholar | |
Van der Schoot SC, Nuijen B, Sood P, Thurmond KB II, Stewart DR, Rice JR and Beijnen JH: Pharmaceutical development, quality control, stability and compatibility of a parenteral lyophilized formulation of the investigational polymer-conjugated platinum antineoplastic agent AP5346. Pharmazie. 61:835–844. 2006. | |
Sood P, Thurmond KB II, Jacob JE, Waller LK, Silva GO, Stewart DR and Nowotnik DP: Synthesis and characterization of AP5346, a novel polymer-linked diaminocyclohexyl platinum chemotherapeutic agent. Bioconjug Chem. 17:1270–1279. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rademaker-Lakhai JM, Terret C, Howell SB, et al: A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin Cancer Res. 10:3386–3395. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tibben MM, Rademaker-Lakhai JM, Rice JR, Stewart DR, Schellens JH and Beijnen JH: Determination of total platinum in plasma and plasma ultrafiltrate, from subjects dosed with the platinum-containing N-(2-hydroxypropyl)methacrylamide copolymer AP5280, by use of graphite-furnace Zeeman atomic-absorption spectrometry. Anal Bioanal Chem. 373:233–236. 2002. View Article : Google Scholar | |
Lin X, Zhang Q, Rice JR, Stewart DR, Nowotnik DP and Howell SB: Improved targeting of platinum chemotherapeutics. the antitumour activity of the HPMA copolymer platinum agent AP5280 in murine tumour models. Eur J Cancer. 40:291–297. 2004.PubMed/NCBI | |
Podgorski I and Sloane BF: Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp. 70:263–276. 2003.PubMed/NCBI | |
Calkins CC, Sameni M, Koblinski J, Sloane BF and Moin K: Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy. J Histochem Cytochem. 46:745–751. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kovar M, Strohalm J, Etrych T, Ulbrich K and Rihova B: Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug Chem. 13:206–215. 2002. View Article : Google Scholar : PubMed/NCBI | |
Thanou M and Duncan R: Polymer-protein and polymer-drug conjugates in cancer therapy. Curr Opin Investig Drugs. 4:701–709. 2003.PubMed/NCBI | |
Mai J, Waisman DM and Sloane BF: Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim Biophys Acta. 1477:215–230. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kratz F, Muller IA, Ryppa C and Warnecke A: Prodrug strategies in anticancer chemotherapy. ChemMedChem. 3:20–53. 2008. View Article : Google Scholar : PubMed/NCBI | |
Trouet A, Masquelier M, Baurain R and Deprez-De Campeneere D: A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydro-lases, as required for a lysosomotropic drug-carrier conjugate: in vitro and in vivo studies. Proc Natl Acad Sci USA. 79:626–629. 1982. View Article : Google Scholar | |
Omelyanenko V, Kopeckova P, Gentry C and Kopecek J: Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization and subcellular fate. J Control Release. 53:25–37. 1998. View Article : Google Scholar : PubMed/NCBI | |
Carl PL, Chakravarty PK and Katzenellenbogen JA: A novel connector linkage applicable in prodrug design. J Med Chem. 24:479–480. 1981. View Article : Google Scholar : PubMed/NCBI | |
Seymour LW, Ulbrich K, Steyger PS, Brereton M, Subr V, Strohalm J and Duncan R: Tumour tropism and anti-cancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br J Cancer. 70:636–641. 1994. View Article : Google Scholar : PubMed/NCBI | |
Duncan R, Kopeckova P, Strohalm J, Hume IC, Lloyd JB and Kopecek J: Anticancer agents coupled to N-(2-hydroxypropyl) methacrylamide copolymers. II. Evaluation of daunomycin conjugates in vivo against L1210 leukaemia. Br J Cancer. 57:147–156. 1988. View Article : Google Scholar : PubMed/NCBI | |
Duncan R, Kopeckova-Rejmanova P, Strohalm J, et al: Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br J Cancer. 55:165–174. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hopewel JW, Duncan R, Wilding D and Chakrabarti K: Preclinical evaluation of the cardiotoxicity of PK2: a novel HPMA copolymer-doxorubicin-galactosamine conjugate antitumour agent. Hum Exp Toxicol. 20:461–470. 2001. View Article : Google Scholar : PubMed/NCBI | |
Minko T, Kopeckova P, Pozharov V and Kopecek J: HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J Control Release. 54:223–233. 1998. View Article : Google Scholar : PubMed/NCBI | |
Minko T, Kopeckova P and Kopecek J: Chronic exposure to HPMA copolymer-bound adriamycin does not induce multidrug resistance in a human ovarian carcinoma cell line. J Control Release. 59:133–148. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tijerina M, Fowers KD, Kopeckova P and Kopecek J: Chronic exposure of human ovarian carcinoma cells to free or HPMA copolymer-bound mesochlorin e6 does not induce P-glycoprotein-mediated multidrug resistance. Biomaterials. 21:2203–2210. 2000. View Article : Google Scholar | |
Minko T, Kopeckova P and Kopecek J: Efficacy of the chemo-therapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int J Cancer. 86:108–117. 2000. View Article : Google Scholar : PubMed/NCBI | |
Duncan R: Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs. 3:175–210. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kovar L, Strohalm J, Chytil P, et al: The same drug but a different mechanism of action: comparison of free doxorubicin with two different N-(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugates in EL-4 cancer cell line. Bioconjug Chem. 18:894–902. 2007. View Article : Google Scholar | |
Satchi R, Connors TA and Duncan R: PDEPT: polymer-directed enzyme prodrug therapy. I. HPMA copolymer-cathepsin B and PK1 as a model combination. Br J Cancer. 85:1070–1076. 2001. View Article : Google Scholar : PubMed/NCBI | |
Paul A, Vicent MJ and Duncan R: Using small-angle neutron scattering to study the solution conformation of N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates. Biomacromolecules. 8:1573–1579. 2007. View Article : Google Scholar | |
Pimm MV, Perkins AC, Strohalm J, Ulbrich K and Duncan R: Gamma scintigraphy of a 123I-labelled N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugate containing galactosamine following intravenous administration to nude mice bearing hepatic human colon carcinoma. J Drug Target. 3:385–390. 1996. | |
Duncan R, Seymour LC, Scarlett L, Lloyd JB, Rejmanova P and Kopecek J: Fate of N-(2-hydroxypropyl)methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats. Biochim Biophys Acta. 880:62–71. 1986. View Article : Google Scholar | |
Virgolini I, Muller C, Klepetko W, Angelberger P, Bergmann H, O’Grady J and Sinzinger H: Decreased hepatic function in patients with hepatoma or liver metastasis monitored by a hepatocyte specific galactosylated radioligand. Br J Cancer. 61:937–941. 1990. View Article : Google Scholar | |
Schlepper-Schafer J, Hulsmann D, Djovkar A, Meyer HE, Herbertz L, Kolb H and Kolb-Bachofen V: Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages. Exp Cell Res. 165:494–506. 1986.PubMed/NCBI | |
Shiah JG, Dvorak M, Kopeckova P, Sun Y, Peterson CM and Kopecek J: Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates in nude mice. Eur J Cancer. 37:131–139. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rihova B, Bilej M, Vetvicka V, Ulbrich K, Strohalm J, Kopecek J and Duncan R: Biocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin. Immunogenicity and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials. 10:335–342. 1989. View Article : Google Scholar | |
Omelyanenko V, Kopeckova P, Gentry C, Shiah JG and Kopecek J: HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 1. influence of the method of synthesis on the binding affinity to OVCAR-3 ovarian carcinoma cells in vitro. J Drug Target. 3:357–373. 1996. View Article : Google Scholar : PubMed/NCBI | |
Omelyanenko V, Gentry C, Kopeckova P and Kopecek J: HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int J Cancer. 75:600–608. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kunath K, Kopeckova P, Minko T and Kopecek J: HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 3. The effect of free and polymer-bound adriamycin on the expression of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur J Pharm Biopharm. 49:11–15. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jensen KD, Kopeckova P, Bridge JH and Kopecek J: The cytoplasmic escape and nuclear accumulation of endocytosed and microinjected HPMA copolymers and a basic kinetic study in Hep G2 cells. AAPS PharmSci. 3:E322001. View Article : Google Scholar : PubMed/NCBI | |
David A, Kopeckova P, Kopecek J and Rubinstein A: The role of galactose, lactose and galactose valency in the biorecognition of N-(2-hydroxypropyl)methacrylamide copolymers by human colon adenocarcinoma cells. Pharm Res. 19:1114–1122. 2002. View Article : Google Scholar : PubMed/NCBI | |
David A, Kopeckova P, Rubinstein A and Kopecek J: Enhanced biorecognition and internalization of HPMA copolymers containing multiple or multivalent carbohydrate side-chains by human hepatocarcinoma cells. Bioconjug Chem. 12:890–899. 2001. View Article : Google Scholar | |
Irimura T, Matsushita Y, Sutton RC, et al: Increased content of an endogenous lactose-binding lectin in human colorectal carcinoma progressed to metastatic stages. Cancer Res. 51:387–393. 1991. | |
Bresalier RS, Mazurek N, Sternberg LR, Byrd JC, Yunker CK, Nangia-Makker P and Raz A: Metastasis of human colon cancer is altered by modifying expression of the beta-galactoside-binding protein galectin 3. Gastroenterology. 115:287–296. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ohannesian DW, Lotan D, Thomas P, Jessup JM, Fukuda M, Gabius HJ and Lotan R: Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res. 55:2191–2199. 1995.PubMed/NCBI | |
Lotz MM, Andrews CW Jr, Korzelius CA, Lee EC, Steele GD Jr, Clarke A and Mercurio AM: Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad Sci USA. 90:3466–3470. 1993. View Article : Google Scholar : PubMed/NCBI | |
Castronovo V, Campo E, van den Brule FA, et al: Inverse modulation of steady-state messenger RNA levels of two non-integrin laminin-binding proteins in human colon carcinoma. J Natl Cancer Inst. 84:1161–1169. 1992. View Article : Google Scholar : PubMed/NCBI | |
David A, Kopeckova P, Minko T, Rubinstein A and Kopecek J: Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer-doxorubicin conjugates to human colon cancer cells. Eur J Cancer. 40:148–157. 2004. View Article : Google Scholar : PubMed/NCBI | |
Etrych T, Strohalm J, Chytil P, Cernoch P, Starovoytova L, Pechar M and Ulbrich K: Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur J Pharm Sci. 42:527–539. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dvorak M, Kopeckova P and Kopecek J: High-molecular weight HPMA copolymer-adriamycin conjugates. J Control Release. 60:321–332. 1999. View Article : Google Scholar : PubMed/NCBI | |
Etrych T, Jelinkova M, Rihova B and Ulbrich K: New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release. 73:89–102. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schmid B, Chung DE, Warnecke A, Fichtner I and Kratz F: Albumin-binding prodrugs of camptothecin and doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by cathepsin B: synthesis and antitumor efficacy. Bioconjug Chem. 18:702–716. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kratz F, Warnecke A, Scheuermann K, et al: Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem. 45:5523–5533. 2002. View Article : Google Scholar | |
Warnecke A and Kratz F: Maleimide-oligo(ethylene glycol) derivatives of camptothecin as albumin-binding prodrugs: synthesis and antitumor efficacy. Bioconjug Chem. 14:377–387. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kratz F and Beyer U: Serum proteins as drug carriers of anti-cancer agents: a review. Drug Deliv. 5:281–299. 1998. View Article : Google Scholar | |
Elzoghby AO, Samy WM and Elgindy NA: Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 157:168–182. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kratz F: Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 132:171–183. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Kratz F and Walker UA: The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer. 120:927–934. 2007. View Article : Google Scholar : PubMed/NCBI | |
Unger C, Haring B, Medinger M, Drevs J, Steinbild S, Kratz F and Mross K: Phase I and pharmacokinetic study of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin. Clin Cancer Res. 13:4858–4866. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dubowchik GM and Firestone RA: Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg Med Chem Lett. 8:3341–3346. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dubowchik GM, Mosure K, Knipe JO and Firestone RA: Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anti-cancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin. Bioorg Med Chem Lett. 8:3347–3352. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dubowchik GM, Firestone RA, Padilla L, et al: Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug Chem. 13:855–869. 2002. View Article : Google Scholar | |
Calderón M, Quadir MA, Strumia M and Haag R: Functional dendritic polymer architectures as stimuli-responsive nano-carriers. Biochimie. 92:1242–1251. 2010.PubMed/NCBI | |
De Groot FM, Broxterman HJ, Adams HP, et al: Design, synthesis and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther. 1:901–911. 2002. |