1.
|
Teperino R, Schoonjans K and Auwerx J:
Histone methyltransferases and demethylases; can they link
metabolism and transcription? Cell Metab. 12:321–327. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2.
|
Burgio G, Onorati MC and Corona DFV:
Chromatin remodeling regulation by small molecules and metabolites.
Biochim Biophys Acta. 1799:671–680. 2010. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Hou H and Yu H: Structural insights into
histone lysine demethylation. Curr Opin Struct Biol. 20:739–748.
2010. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Iyer LM, Abhiman S and Aravind L: Natural
history of eukaryotic DNA methylation systems. Prog Mol Biol Transl
Sci. 101:25–104. 2011. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Tsukada Y-i, Fang J, Erdjument-Bromage H,
Warren ME, Borchers CH, Tempst P and Zhang Y: Histone demethylation
by a family of JmjC domain-containing proteins. Nature.
439:811–816. 2006. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Yamane K, Toumazou C, Tsukada Y-i,
Erdjument-Bromage H, Tempst P, Wong J and Zhang Y: JHDM2A, a
JmjC-containing H3K9 demethylase, facilitates transcription
activation by androgen receptor. Cell. 125:483–495. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7.
|
Wu H and Zhang Y: Mechanisms and functions
of Tet protein–mediated 5-methylcytosine oxidation. Genes Dev.
25:2436–2452. 2011.
|
8.
|
McDonough MA, Loenarz C, Chowdhury R,
Clifton IJ and Schofield CJ: Structural studies of human
2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol.
20:659–672. 2010. View Article : Google Scholar
|
9.
|
Torti SV and Torti FM: Ironing out cancer.
Cancer Res. 71:1511–1514. 2011. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Jones PA and Baylin SB: The epigenomics of
cancer. Cell. 128:683–692. 2007. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Miller LD, Coffman LG, Chou JW, Black MA,
Berg J, D’Agostino R Jr, Torti SV and Torti FM: An iron regulatory
gene signature predicts outcome in breast cancer. Cancer Res.
71:6728–6737. 2011. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Baylin SB and Jones PA: A decade of
exploring the cancer epigenome - biological and translational
implications. Nat Rev Cancer. 11:726–734. 2011. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Buss JL, Torti FM and Torti SV: The role
of iron chelation in cancer therapy. Curr Med Chem. 10:1021–1034.
2003. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Yu Y, Gutierrez E, Kovacevic Z, Saletta F,
Obeidy P, Suryo Rahmanto Y and Richardson DR: Iron chelators for
the treatment of cancer. Curr Med Chem. 19:2689–2702. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16.
|
Kawamoto M, Horibe T, Kohno M and Kawakami
K: A novel transferring receptor-targeted hybrid peptide
disintegrates cancer cell membrane to induce rapid killing of
cancer cells. BMC Cancer. 11:3592011. View Article : Google Scholar
|
17.
|
Rao VA, Klein SR, Agama KK, Toyoda E,
Adachi N, Pommier Y and Shacter EB: The iron chelator Dp44mT causes
DNA damage and selective inhibition of topoisomerase IIα in breast
cancer cells. Cancer Res. 69:948–957. 2009.PubMed/NCBI
|
18.
|
Chekhun VF, Lukyanova NY, Kovalchuk O,
Tryndyak VP and Pogribny IP: Epigenetic profiling of
multidrug-resistant MCF-7 breast cancer adenocarcinoma cells
reveals novel hyper- and hypomethylated targets. Mol Cancer Ther.
6:1089–1098. 2007. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative CT method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Zhang JJ, Zhang L, Zhou K, Ye X, Liu C,
Zhang L, Kang J and Cai C: Analysis of global DNA methylation by
hydrophilic interaction ultra high-pressure liquid chromatography
tandem mass spectrometry. Anal Biochem. 413:164–170. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21.
|
Pogribny I, Yi P and James SJ: A sensitive
new method for rapid detection of abnormal methylation patterns in
global DNA and within CpG islands. Biochem Biophys Res Commun.
262:624–628. 1999. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Kim TD, Shin S, Berry WL, Oh S and
Janknecht R: The JMJDA demethylase regulates apoptosis and
proliferation in colon cancer cells. J Cell Biochem. 113:1368–1376.
2012. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Stewart MD, Li J and Wong J: Relationship
between histone H3 lysine 9 methylation, transcription repression,
and heterochromatin protein 1 recruitment. Mol Cell Biol.
25:2525–2538. 2005. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Shi Y, Lan F, Matson C, Mulligan P,
Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation
mediated by the nuclear amine oxidase homolog LSD1. Cell.
119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Hileti D, Panayiotidis P and Hoffbrand AV:
Iron chelators induce apoptosis in proliferating cells. Br J
Haematol. 89:181–187. 1995. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Pan YJ, Hopkins RG and Loo G: Increased
GADD153 gene expression during iron chelation-induced apoptosis in
Jurkat T-lymphocytes. Biochim Biophys Acta. 1691:41–50. 2004.
View Article : Google Scholar : PubMed/NCBI
|
27.
|
So EY, Ausman M, Saeki T and Ouchi T:
Phosphorylation of SMC1 by ATR is required for desferrioxamine
(DFO)-induced apoptosis. Cell Death Dis. 2:e1282011. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Saletta F, Suryo Rahmanto Y, Siafakas AR
and Richardson DR: Cellular iron depletion and the mechanisms
involved in the iron-dependent regulation of the growth arrest and
DNA damage family of genes. J Biol Chem. 286:35396–35406. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29.
|
Escoubet-Lozach L, Lin IL, Jensen-Pergakes
K, Brady HA, Gandhi AK, Schafer PH, Muller GW, Worland PJ, Chan KW
and Verhelle D: Pomalidomide and lenalidomide induce p21WAF-1
expression in both lymphoma and multiple myeloma through a
LSD1-mediated epigenetic mechanism. Cancer Res. 69:7347–7356. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30.
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar
|
31.
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
32.
|
Huang X: Does iron have a role in breast
cancer? Lancet Oncol. 9:803–807. 2008. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Pinnix ZK, Miller LD, Wang W, D’Agostino R
Jr, Kute T, Willngham MC, Hatcher H, Tesfay L, Sui G, Di X, Torti
SV and Torti FM: Ferroportin and iron regulation in breast cancer
progression and prognosis. Sci Transl Med. 2:43ra562010. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Shpyleva SI, Tryndyak VP, Kovalchuk O,
Starlard-Davenport A, Chekhun VF, Beland FA and Pogribny IP: Role
of ferritin alterations in human breast cancer cells. Breast Cancer
Res Treat. 126:63–71. 2011. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Hoke EM, Maylock CA and Shacter E:
Desferal inhibits breast tumor growth and does not interfere with
the tumoricidal activity of doxorubicin. Free Radic Biol Med.
39:403–411. 2005. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Whitnall M, Howard J, Ponka P and
Richardson DR: A class of iron chelators with a wide spectrum of
potent antitumor activity that overcomes resistance to
chemotherapeutics. Proc Natl Acad Sci USA. 103:14901–14906. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37.
|
Chen Z, Zhang D, Yue F, Zheng M, Kovacevic
Z and Richardson DR: The iron chelators Dp44mT and DFO inhibit
TGF-β-induced epithelial-mesenchymal transition via up-regulation
of N-Myc downstream-regulated gene-1 (NDRG1). J Biol Chem.
287:17016–17028. 2012.PubMed/NCBI
|
38.
|
Pollard PJ, Loenarz C, Mole DR, McDonough
MA, Gleadle JM, Schofield CJ and Ratcliffe PJ: Regulation of
Jumonji-domain-containing histone demethylases by hypoxia-inducible
factor (HIF)-1α. Biochem J. 416:387–394. 2008.
|
39.
|
Culhane JC and Cole PA: LSD1 and the
chemistry of histone demethylation. Curr Opin Chem Biol.
11:561–568. 2007. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Luka Z, Moss F, Loukachevitch LV, Bornhop
DJ and Wagner C: Histone demethylase LSD1 is a folate-binding
protein. Biochemistry. 50:4750–4756. 2011. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Black JC, Allen A, Van Rechem C, Forbes E,
Longworth M, Tschöp K, Rinehart C, Quiton J, Walsh R, Smallwood A,
Dyson NJ and Whetstine JR: Conserved antagonism between
JMJD2A/KDM4A and HP1γ during cell cycle progression. Mol Cell.
40:736–748. 2010.PubMed/NCBI
|
42.
|
Mallette FA, Mattiroli F, Cui G, Young LC,
Hendzel MJ, Mer G, Sixma TK and Richard S: RNF8- and
RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1
recruitment to DNA damage sites. EMBO J. 31:1865–1878. 2012.
View Article : Google Scholar : PubMed/NCBI
|
43.
|
Kim TD, Oh S, Shin S and Janknecht R:
Regulation of tumor suppressor p53 and HCT116 cell physiology by
histone demethylase JMJD2D/KDM4D. PLoS One. 7:e346182012.
View Article : Google Scholar : PubMed/NCBI
|
44.
|
Binda O, LeRoy G, Bua DJ, Garcia BA,
Gozani O and Richard S: Trimethylation of histone H3 lysine 4
impairs methylation of histone H3 lysine 9. Regulation of lysine
methyltransferases by physical interaction with their substrates.
Epigenetics. 5:767–775. 2010. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Kovacevic Z, Sivagurunathan S, Mangs H,
Chikhani S, Zhang D and Richardson DR: The metastasis suppressor,
N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via
p53-independent mechanisms. Carcinogenesis. 32:732–740. 2011.
View Article : Google Scholar : PubMed/NCBI
|
46.
|
Tryndyak VP, Beland FA and Pogribny IP:
E-cadherin transcriptional down-regulation by epigenetic and
microRNA-200 family alterations is related to mesenchymal and
drug-resistant phenotypes in human breast cancer cells. Int J
Cancer. 126:2575–2583. 2010.PubMed/NCBI
|