1.
|
Steinman RM and Banchereau J: Taking
dendritic cells into medicine. Nature. 449:419–426. 2007.
View Article : Google Scholar : PubMed/NCBI
|
2.
|
Banchereau J and Steinman RM: Dendritic
cells and the control of immunity. Nature. 392:245–252. 1998.
View Article : Google Scholar : PubMed/NCBI
|
3.
|
Jego G, Pascual V, Palucka AK and
Banchereau J: Dendritic cells control B cell growth and
differentiation. Curr Dir Autoimmun. 8:124–139. 2005. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Shaw J, Wang YH, Ito T, Arima K and Liu
YJ: Plasmacytoid dendritic cells regulate B-cell growth and
differentiation via CD70. Blood. 115:3051–3057. 2010. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Steinman RM, Hawiger D and Nussenzweig MC:
Tolerogenic dendritic cells. Annu Rev Immunol. 21:685–711. 2003.
View Article : Google Scholar
|
6.
|
Hoos A, Britten CM, Huber C and
O’Donnell-Tormey J: A methodological framework to enhance the
clinical success of cancer immunotherapy. Nature Biotechnol.
29:867–870. 2011. View
Article : Google Scholar : PubMed/NCBI
|
7.
|
Palucka K and Banchereau J: Cancer
immunotherapy via dendritic cells. Nature Rev. 12:265–277.
2012.PubMed/NCBI
|
8.
|
Sioud M and Sørensen D: Generation of an
effective anti-tumor immunity after immunization with xenogeneic
antigens. Eur J Immunol. 33:38–45. 2003. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Sioud M: Does our current understanding of
immune tolerance, autoimmunity, and immunosuppressive mechanisms
facilitate the design of efficient cancer vaccines? Scand J
Immunol. 70:516–525. 2009. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Munn DH, Sharma MD, Lee JR, Jhaver KG,
Johnson TS, Keskin DB, Marshall B, Chandler P, et al: Potential
regulatory function of human dendritic cells expressing indoleamine
2,3-dioxyggenase. Science. 297:1867–1870. 2002. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Hwu P, Du MX, Lapointe R, Do M, Taylor MW
and Young HA: Indoleamine 2,3-dioxygenase production by human
dendritic cells results in the inhibition of T cell prolifieration.
J Immunol. 164:3596–3599. 2000. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Braun D, Longman RS and Albert ML: A
two-step induction of indoleamine 2,3 dioxygenase (IDO) activity
during dendritic cell maturation. Blood. 106:2375–2381. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13.
|
Munn DH, Sharma MD and Hou D: Expression
of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in
draining-draining lymph noedes. J Clin Invest. 114:280–290. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14.
|
Jonuleit H, Schmitt E, Stenbrink K and Enk
AH: Dendritic cells as a tool to induce anergic and regulatory T
cells. Trends Immunol. 22:394–400. 2001. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Sørensen RB, Berge-Hansen L, Junker N,
Hansen CA, Hadrup SR, Schumacher TN, Svane IM, Becker JC, thor
Straten P and Andersen MH: The immune system strikes back: cellular
immune responses against indoleamine 2,3-dioxygenase. PLoS One.
4:e69102010.PubMed/NCBI
|
16.
|
Flatekval GF and Sioud M: Modulation of
dendritic cell function and maturation with mono- and bifunctional
small interfering RNAs targeting indoleamine 2,3-dioxygenase.
Immunology. 128:e837–e848. 2010. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Guppy AE, Nathan PD and Rustin GJ:
Epithelial ovarian cancer: a review of current management. Clin
Oncol. 17:399–411. 2005. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Sæbøe-Larssen S, Fossberg E and Gaudernack
G: mRNA-based electrotransfection of human dendritic cells and
induction of cytotoxic T lymphocyte responses against the
telomerase catalytic subunit (hTERT). J Immunol Methods.
259:191–203. 2002.PubMed/NCBI
|
19.
|
Suso EMI, Dueland S, Rasmussen AM, Vetrhus
T, Aamdal S, Kvalheim G and Gaudernack G: hTERT mRNA dendritic cell
vaccination: complete response in a pancreatic cancer patient
associated with response against several hTERT epitopes. Cancer
Immunol Immunother. 60:809–818. 2011. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Tanaka F, Yamaguchi H, Haraguchi N,
Mashino K, Ohta M, Inoue H and Mori M: Efficient induction of
specific cytotoxic T lymphocytes to tumor rejection peptide using
functional matured 2 day-cultured dendritic cells derived from
human monocytes. Int J Oncol. 29:1263–1268. 2006.
|
21.
|
Liu JP, Chen W, Schwarer AP and Li H:
Telomerase in cancer immunotherapy. Biochim Biophys Acta.
1805:35–42. 2010.PubMed/NCBI
|
22.
|
Andersen MH, Svane IM, Becker JC and
Straten PT: The universal character of the tumor-associated antigen
survivin. Clin Cancer Res. 13:5991–5994. 2007. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Moberslein M and Sioud M: Galectin-1 and
-3 gene silencing in immature and mature dendritic cells enhances T
cell activation and interferon-γ production. J Leuko Biol.
91:461–467. 2012.PubMed/NCBI
|
24.
|
Sioud M, Kjeldsen-Kragh J, Quayle AJ,
Wiker HG, Sørskaar D, Natvig JB and Førre O: Immune responses to
18.6 and 30-kDa mycobacterial antigens in rheumatoid patients, and
V beta usage by specific synovial T-cell lines and fresh T cells.
Scand J Immunol. 34:803–812. 1991. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Wobser M, Voigt H and Houben R: Dendritic
cell based antitumor vaccination: impact of functional indoleamine
2,3-dioxygenase expression. Cancer Immunol Immunother.
56:1017–1024. 2007. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Hodge JW, Ardiani A, Farsaci B, Kwilas AR
and Gmeiro SR: The tiping point for combination therapy: cancer
vaccines with radiation, chemotherapy, or targeted small molecule
inhibitors. Semin Oncol. 39:323–339. 2012. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Munn DH and Mellor AL: IDO expression by
dendritic cells: tolerance and tryptophan catabolism. Nat Rev
Immunol. 4:762–774. 2004. View
Article : Google Scholar : PubMed/NCBI
|
28.
|
Shen L, Evel-Kabler K, Strube R and Chen
SY: Silencing of SOCS1 enhances antigen presentation by dendritic
cells and antigen-specific anti-tumor immunity. Nat Biotechnol.
22:1546–1553. 2004. View
Article : Google Scholar : PubMed/NCBI
|
29.
|
Furset G and Sioud M: Design of
bifunctional siRNAs: combining immunostimulation and gene-silencing
in one single siRNA molecule. Biochem Biophys Res Commun.
352:642–649. 2007. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Hornung V, Ellegast J, Kim S, Brzózka K,
Jung A, Kato H, Poeck H, et al: 5′-Triphosphate RNA is the ligand
for RIG-I. Science. 314:994–997. 2006.
|
31.
|
Pichlmair A, Schulz O, Tan CP, Naslund TI,
Liljestrom P, Weber F and Reis e Sousa C: RIG-I-mediated antiviral
responses to single-stranded RNA bearing 5′-phosphates. Science.
314:997–1001. 2006.PubMed/NCBI
|
32.
|
Poeck H, Besch R and Maihoefer C:
5′-triphosphate-siRNA: turning gene silencing and RIG-I activation
against melanoma. Nat Med. 14:1256–1263. 2008.
|
33.
|
Kubler K, Gehrke N and Riemann S: Targeted
activation of RNA helicase retinoic acid-inducible gene-I induces
proimmunogenic apoptosis of human ovarian cancer cells. Cancer Res.
70:5293–5304. 2012. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Cheong C, Matos I and Choi JH: Microbial
stimulation fully differentiates monocytes to DC-SIGN/CD209(+)
dendritic cells for immune T cell areas. Cell. 143:416–429.
2010.PubMed/NCBI
|
35.
|
Fire A, Xu S and Montgomery MK: Potent and
specific genetic interference by double-stranded RNA in
Caenorhabditis elegans. Nature. 391:806–811. 1998.
View Article : Google Scholar : PubMed/NCBI
|
36.
|
Kaiser PK, Symons RCA and Shah SM: A
randomized, double-blind, placebo-controlled study of an RNAi-based
therapy directed against respiratory syncytial virus. Proc Natl
Acad Sci USA. 107:8800–8805. 2010. View Article : Google Scholar
|
37.
|
Zamora MR, Budev M and Rolfe M: RNA
interference therapy in lung transplant patients infected with
respiratory syncytial virus. Am J Resp Critical Care Med.
183:531–538. 2011. View Article : Google Scholar : PubMed/NCBI
|
38.
|
DiGiusto DL, Krishnan A and Li L:
RNA-based gene therapy for HIV with lentiviral vector-modified
CD34(+) cells in patients undergoing transplantation for
AIDS-related lymphoma. Sci Transl Med. 2:36ra432010.PubMed/NCBI
|
39.
|
Leachman SA, Hickerson RP and Schwartz ME:
First-inhuman mutation-targeted siRNA Phase I trial of an inherited
skin disorder. Mol Ther. 18:442–446. 2010. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Tiemann K and Rossi JJ: RNAi-based
therapeutics-current status, challenges and prospects. EMBO Mol
Med. 1:142–151. 2009. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Behlke MA: Progress towards in vivo
use of siRNAs. Mol Ther. 13:644–670. 2006. View Article : Google Scholar : PubMed/NCBI
|