1.
|
Kimura Y, Sato K, Arakawa F, et al: Mantle
cell lymphoma shows three morphological evolutions of classical,
intermediate, and aggressive forms, which occur in parallel with
increased labeling index of cyclin D1 and Ki-67. Cancer Sci.
101:806–814. 2010. View Article : Google Scholar
|
2.
|
Kaleem Z, Wakoff AR, Smith RP and Hess JL:
Blastic transformation of mantle cell lymphoma. Arch Pathol Lab
Med. 120:577–580. 1996.PubMed/NCBI
|
3.
|
Bodrug SE, Warner BJ, Bath ML, Lindeman
GJ, Harris AW and Adams JM: Cyclin D1 transgene impedes lymphocyte
maturation and collaborates in lymphomagenesis with the myc gene.
EMBO J. 13:2124–2130. 1994.PubMed/NCBI
|
4.
|
Hirt C, Schuler F, Dolken L, Schmidt CA
and Dolken G: Low prevalence of circulating
t(11;14)(q13;q32)-positive cells in the peripheral blood of healthy
individuals as detected by real-time quantitative PCR. Blood.
104:904–905. 2004. View Article : Google Scholar : PubMed/NCBI
|
5.
|
De Vos S, Krug U, Hofmann WK, et al: Cell
cycle alterations in the blastoid variant of mantle cell lymphoma
(MCL-BV) as detected by gene expression profiling of mantle cell
lymphoma (MCL) and MCL-BV. Diagn Mol Pathol. 12:35–43.
2003.PubMed/NCBI
|
6.
|
Rizzatti EG, Falcao RP, Panepucci RA, et
al: Gene expression profiling of mantle cell lymphoma cells reveals
aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta
signalling pathways. Br J Haematol. 130:516–526. 2005. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Martinez N, Camacho FI, Algara P, et al:
The molecular signature of mantle cell lymphoma reveals multiple
signals favoring cell survival. Cancer Res. 63:8226–8232.
2003.PubMed/NCBI
|
8.
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Gentleman RC, Carey VJ, Bates DM, et al:
Bioconductor: open software development for computational biology
and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Smyth GK, Michaud J and Scott HS: Use of
within-array replicate spots for assessing differential expression
in micro-array experiments. Bioinformatics. 21:2067–2075. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11.
|
Quackenbush J: Microarray data
normalization and transformation. Nat Genet. 32(Suppl): 496–501.
2002. View
Article : Google Scholar
|
12.
|
Saeed AI, Sharov V, White J, et al: TM4: a
free, open-source system for microarray data management and
analysis. Biotechniques. 34:374–378. 2003.PubMed/NCBI
|
13.
|
Aguilera O, Munoz A, Esteller M and Fraga
MF: Epigenetic alterations of the Wnt/beta-catenin pathway in human
disease. Endocr Metab Immune Disord Drug Targets. 7:13–21. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14.
|
Daugherty RL and Gottardi CJ:
Phospho-regulation of beta-catenin adhesion and signaling
functions. Physiology (Bethesda). 22:303–309. 2007. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Fang D, Hawke D, Zheng Y, et al:
Phosphorylation of beta-catenin by AKT promotes beta-catenin
transcriptional activity. J Biol Chem. 282:11221–11229. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16.
|
Massague J: G1 cell-cycle control and
cancer. Nature. 432:298–306. 2004. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Rosenwald A, Wright G, Wiestner A, et al:
The proliferation gene expression signature is a quantitative
integrator of oncogenic events that predicts survival in mantle
cell lymphoma. Cancer Cell. 3:185–197. 2003. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Sander B, Flygare J, Porwit-Macdonald A,
et al: Mantle cell lymphomas with low levels of cyclin D1 long mRNA
transcripts are highly proliferative and can be discriminated by
elevated cyclin A2 and cyclin B1. Int J Cancer. 117:418–430. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19.
|
Perez de Castro I, de Carcer G and
Malumbres M: A census of mitotic cancer genes: new insights into
tumor cell biology and cancer therapy. Carcinogenesis. 28:899–912.
2007.PubMed/NCBI
|
20.
|
Blenk S, Engelmann JC, Pinkert S, et al:
Explorative data analysis of MCL reveals gene expression networks
implicated in survival and prognosis supported by explorative CGH
analysis. BMC Cancer. 8:1062008. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Hui D, Reiman T, Hanson J, et al:
Immunohistochemical detection of cdc2 is useful in predicting
survival in patients with mantle cell lymphoma. Mod Pathol.
18:1223–1231. 2005. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Schimmer AD: Inhibitor of apoptosis
proteins: translating basic knowledge into clinical practice.
Cancer Res. 64:7183–7190. 2004. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Mita AC, Mita MM, Nawrocki ST and Giles
FJ: Survivin: key regulator of mitosis and apoptosis and novel
target for cancer therapeutics. Clin Cancer Res. 14:5000–5005.
2008. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Martinez A, Bellosillo B, Bosch F, et al:
Nuclear survivin expression in mantle cell lymphoma is associated
with cell proliferation and survival. Am J Pathol. 164:501–510.
2004. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Wierstra I and Alves J: FOXM1, a typical
proliferation-associated transcription factor. Biol Chem.
388:1257–1274. 2007. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Liu M, Dai B, Kang SH, et al: FoxM1B is
overexpressed in human glioblastomas and critically regulates the
tumorigenicity of glioma cells. Cancer Res. 66:3593–3602. 2006.
View Article : Google Scholar : PubMed/NCBI
|
27.
|
Kalin TV, Wang IC, Ackerson TJ, et al:
Increased levels of the FoxM1 transcription factor accelerate
development and progression of prostate carcinomas in both TRAMP
and LADY transgenic mice. Cancer Res. 66:1712–1720. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28.
|
Ott G, Kalla J, Ott MM, et al: Blastoid
variants of mantle cell lymphoma: frequent bcl-1 rearrangements at
the major translocation cluster region and tetraploid chromosome
clones. Blood. 89:1421–1429. 1997.PubMed/NCBI
|
29.
|
Pinyol M, Hernandez L, Cazorla M, et al:
Deletions and loss of expression of p16INK4a and p21Waf1 genes are
associated with aggressive variants of mantle cell lymphomas.
Blood. 89:272–280. 1997.PubMed/NCBI
|
30.
|
Hernandez L, Fest T, Cazorla M, et al: p53
gene mutations and protein overexpression are associated with
aggressive variants of mantle cell lymphomas. Blood. 87:3351–3359.
1996.PubMed/NCBI
|
31.
|
Greiner TC, Moynihan MJ, Chan WC, et al:
p53 mutations in mantle cell lymphoma are associated with variant
cytology and predict a poor prognosis. Blood. 87:4302–4310.
1996.PubMed/NCBI
|
32.
|
Bentz M, Plesch A, Bullinger L, et al:
t(11;14)-positive mantle cell lymphomas exhibit complex karyotypes
and share similarities with B-cell chronic lymphocytic leukemia.
Genes Chromosomes Cancer. 27:285–294. 2000. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Monni O, Oinonen R, Elonen E, et al: Gain
of 3q and deletion of 11q22 are frequent aberrations in mantle cell
lymphoma. Genes Chromosomes Cancer. 21:298–307. 1998. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Stilgenbauer S, Winkler D, Ott G, et al:
Molecular characterization of 11q deletions points to a pathogenic
role of the ATM gene in mantle cell lymphoma. Blood. 94:3262–3264.
1999.PubMed/NCBI
|
35.
|
Soong R, Robbins PD, Dix BR, et al:
Concordance between p53 protein overexpression and gene mutation in
a large series of common human carcinomas. Hum Pathol.
27:1050–1055. 1996. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Vogelstein B, Fearon ER, Hamilton SR, et
al: Genetic alterations during colorectal-tumor development. N Engl
J Med. 319:525–532. 1988. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Reya T, O’Riordan M, Okamura R, et al: Wnt
signaling regulates B lymphocyte proliferation through a LEF-1
dependent mechanism. Immunity. 13:15–24. 2000. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Staal FJ and Sen JM: The canonical Wnt
signaling pathway plays an important role in lymphopoiesis and
hematopoiesis. Eur J Immunol. 38:1788–1794. 2008. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Ge X and Wang X: Role of Wnt canonical
pathway in hematological malignancies. J Hematol Oncol. 3:332010.
View Article : Google Scholar : PubMed/NCBI
|
40.
|
Gelebart P, Anand M, Armanious H, et al:
Constitutive activation of the Wnt canonical pathway in mantle cell
lymphoma. Blood. 112:5171–5179. 2008. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Lako M, Lindsay S, Lincoln J, Cairns PM,
Armstrong L and Hole N: Characterisation of Wnt gene expression
during the differentiation of murine embryonic stem cells in vitro:
role of Wnt3 in enhancing haematopoietic differentiation. Mech Dev.
103:49–59. 2001. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Lu D, Zhao Y, Tawatao R, et al: Activation
of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc
Natl Acad Sci USA. 101:3118–3123. 2004. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Rosenwald A, Alizadeh AA, Widhopf G, et
al: Relation of gene expression phenotype to immunoglobulin
mutation genotype in B cell chronic lymphocytic leukemia. J Exp
Med. 194:1639–1647. 2001. View Article : Google Scholar : PubMed/NCBI
|