Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: Altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism
- Authors:
- William J. Fredericks
- Hankun Yin
- Priti Lal
- Raghunath Puthiyaveettil
- Stephen B. Malkowicz
- Nathaniel J. Fredericks
- John Tomaszewski
- Frank J. Rauscher
- S. Bruce Malkowicz
-
Affiliations: Division of Urology, Department of Surgery, University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, PA 19104, USA, Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA, Pathology and Anatomical Sciences, Buffalo, NY 14214, USA, The Wistar Institute, Philadelphia, PA 19104, USA - Published online on: June 12, 2013 https://doi.org/10.3892/ijo.2013.1985
- Pages: 638-652
This article is mentioned in:
Abstract
Li L and Kaelin WG Jr: New insights into the biology of renal cell carcinoma. Hematol Oncol Clin North Am. 25:667–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
Messer J, Drabick J and Kaag M: Rational therapy for renal cell carcinoma based on its genetic targets. Adv Exp Med Biol. 779:291–308. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pischon T, Nöthlings U and Boeing H: Obesity and cancer. Proc Nutr Soc. 67:128–145. 2008. View Article : Google Scholar | |
Drabkin HA and Gemmill RM: Obesity, cholesterol, and clear-cell renal cell carcinoma (RCC). Adv Cancer Res. 107:39–56. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M and De Bruine AP: VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 221:125–138. 2010. View Article : Google Scholar : PubMed/NCBI | |
Keith B, Johnson RS and Simon MC: HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 12:9–22. 2012.PubMed/NCBI | |
Banumathy G and Cairns P: Signaling pathways in renal cell carcinoma. Cancer Biol Ther. 10:658–664. 2010. View Article : Google Scholar : PubMed/NCBI | |
Linehan WM, Bratslavsky G, Pinto PA, et al: Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 61:329–343. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mihaly Z, Sztupinszki Z, Surowiak P and Gyorffy B: A comprehensive overview of targeted therapy in metastatic renal cell carcinoma. Curr Cancer Drug Targets. 12:857–872. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pal SK, Williams S, Josephson DY, Carmichael C, Vogelzang NJ and Quinn DI: Novel therapies for metastatic renal cell carcinoma: efforts to expand beyond the VEGF/mTOR signaling paradigm. Mol Cancer Ther. 11:526–537. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gebhard RL, Clayman RV, Prigge WF, et al: Abnormal cholesterol metabolism in renal clear cell carcinoma. J Lipid Res. 28:1177–1184. 1987.PubMed/NCBI | |
Christenson E, Merlin S, Saito M and Schlesinger P: Cholesterol effects on BAX pore activation. J Mol Biol. 381:1168–1183. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li YC, Park MJ, Ye SK, Kim CW and Kim YN: Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 168:1107–1118. 2006. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Abundis E, Garcia N, Correa F, Franco M and Zazueta C: Changes in specific lipids regulate BAX-induced mitochondrial permeability transition. FEBS J. 274:6500–6510. 2007. View Article : Google Scholar : PubMed/NCBI | |
Oh HY, Lee EJ, Yoon S, Chung BH, Cho KS and Hong SJ: Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate. 67:1061–1069. 2007. View Article : Google Scholar : PubMed/NCBI | |
Swinnen JV, Brusselmans K and Verhoeven G: Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care. 9:358–365. 2006. View Article : Google Scholar : PubMed/NCBI | |
Prenen H, Gil T and Awada A: New therapeutic developments in renal cell cancer. Crit Rev Oncol Hematol. 69:56–63. 2009. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan R, Armstrong AJ, Dahut W and George DJ: Anti-angiogenic therapy in renal cell cancer. BJU Int. 99:1296–1300. 2007. View Article : Google Scholar : PubMed/NCBI | |
Selak MA, Armour SM, MacKenzie ED, et al: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 7:77–85. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ashrafian H, O’Flaherty L, Adam J, et al: Expression profiling in progressive stages of fumarate-hydratase deficiency: the contribution of metabolic changes to tumorigenesis. Cancer Res. 70:9153–9165. 2010. View Article : Google Scholar : PubMed/NCBI | |
O’Flaherty L, Adam J, Heather LC, et al: Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Hum Mol Genet. 19:3844–3851. 2010.PubMed/NCBI | |
Yang Y, Valera VA, Padilla-Nash HM, et al: UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet Cytogenet. 196:45–55. 2010. View Article : Google Scholar | |
Nakagawa K, Hirota Y, Sawada N, et al: Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 468:117–121. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fredericks WJ, McGarvey T, Wang H, et al: The TERE1 (UBIAD1) bladder tumor suppressor protein interacts with mitochondrial TBL2: regulation of trans-membrane potential, oxidative stress and SXR signaling to the nucleus. J Cell Biochem. View Article : Google Scholar : 2013.[Epub ahead of print]. | |
McGarvey TW, Nguyen T, Tomaszewski JE, Monson FC and Malkowicz SB: Isolation and characterization of the TERE1 gene, a gene down-regulated in transitional cell carcinoma of the bladder. Oncogene. 20:1042–1051. 2001. View Article : Google Scholar : PubMed/NCBI | |
McGarvey TW, Nguyen T, Puthiyaveettil R, Tomaszewski JE and Malkowicz SB: TERE1, a novel gene affecting growth regulation in prostate carcinoma. Prostate. 54:144–155. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fredericks WJ, McGarvey T, Wang H, et al: The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression. DNA Cell Biol. 30:851–864. 2011. View Article : Google Scholar : PubMed/NCBI | |
McGarvey TW, Nguyen TB and Malkowicz SB: An interaction between apolipoprotein E and TERE1 with a possible association with bladder tumor formation. J Cell Biochem. 95:419–428. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weiss JS, Kruth HS, Kuivaniemi H, et al: Mutations in the UBIAD1 gene on chromosome short arm 1, region 36, cause Schnyder crystalline corneal dystrophy. Invest Ophthalmol Vis Sci. 48:5007–5012. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nickerson ML, Kostiha BN, Brandt W, et al: UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy. PLoS One. 5:e107602010. View Article : Google Scholar : PubMed/NCBI | |
Nickerson ML, Bosley AD, Weiss JS, et al: The UBIAD1 prenyltransferase links menaquione-4 synthesis to cholesterol metabolic enzymes. Hum Mutat. 34:317–329. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ihunnah CA, Jiang M and Xie W: Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta. 1812:956–963. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Verma S and Blumberg B: The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl Recept Signal. 7:e0012009.PubMed/NCBI | |
Lamson DW and Plaza SM: The anticancer effects of vitamin K. Altern Med Rev. 8:303–318. 2003.PubMed/NCBI | |
Nishikawa Y, Wang Z, Kerns J, Wilcox CS and Carr BI: Inhibition of hepatoma cell growth in vitro by arylating and non-arylating K vitamin analogs. Significance of protein tyrosine phosphatase inhibition. J Biol Chem. 274:34803–34810. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gilloteaux J, Jamison JM, Neal DR, Loukas M, Doberzstyn T and Summers JL: Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione. Ultrastruct Pathol. 34:140–160. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nowicka B and Kruk J: Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta. 1797:1587–1605. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tielens AG, Rotte C, van Hellemond JJ and Martin W: Mitochondria as we don’t know them. Trends Biochem Sci. 27:564–572. 2002. | |
Vos M, Esposito G, Edirisinghe JN, et al: Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 336:1306–1310. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spurgeon SL, Jones RC and Ramakrishnan R: High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One. 3:e16622008. View Article : Google Scholar : PubMed/NCBI | |
Mugoni V, Postel R, Catanzaro V, et al: Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell. 152:504–518. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jamin N, Neumann JM, Ostuni MA, et al: Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol. 19:588–594. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE and Cravatt BF: Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods. 10:259–264. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Neilson A, Swift AL, et al: Multiparameter metabolic analysis reveals a close l link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 292:C125–C136. 2007. View Article : Google Scholar | |
Klaus V, Hartmann T, Gambini J, et al: 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch Biochem Biophys. 496:93–100. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sano M, Fujita H, Morita I, Uematsu H and Murota S: Vitamin K2 (menatetrenone) induces iNOS in bovine vascular smooth muscle cells: no relationship between nitric oxide production and gamma-carboxylation. J Nutr Sci Vitaminol (Tokyo). 45:711–723. 1999. View Article : Google Scholar | |
Bhalerao S and Clandinin TR: Cell biology. Vitamin K2 takes charge. Science. 336:1241–1242. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shearer MJ and Newman P: Metabolism and cell biology of vitamin K. Thromb Haemost. 100:530–547. 2008. | |
Zhou C, King N, Chen KY and Breslow JL: Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J Lipid Res. 50:2004–2013. 2009. View Article : Google Scholar : PubMed/NCBI | |
Landes N: Homologous metabolic and gene activating routes for vitamins E and K. Mol Aspects Med. 24:337–344. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lim YP and Huang JD: Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet. 23:14–21. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brown AJ and Jessup W: Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med. 30:111–122. 2009.PubMed/NCBI | |
Sonoda J, Chong LW, Downes M, et al: Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites. Proc Natl Acad Sci USA. 102:2198–2203. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Rogers PM, Su C, Varga G, Stayrook KR and Burris TP: Regulation of cholesterologenesis by the oxysterol receptor, LXRalpha. J Biol Chem. 283:26332–26339. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Rader DJ: Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol. 22:368–372. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Collins HL, Ranalletta M, et al: Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest. 117:2216–2224. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lordan S, Mackrill JJ and O’Brien NM: Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 20:321–336. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shibayama-Imazu T, Aiuchi T and Nakaya K: Vitamin K2-mediated apoptosis in cancer cells: role of mitochondrial trans-membrane potential. Vitam Horm. 78:211–226. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jamison JM, Gilloteaux J, Nassiri MR, Venugopal M, Neal DR and Summers JL: Cell cycle arrest and autoschizis in a human bladder carcinoma cell line following Vitamin C and Vitamin K3 treatment. Biochem Pharmacol. 67:337–351. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jamison JM, Gilloteaux J, Perlaky L, et al: Nucleolar changes and fibrillarin redistribution following apatone treatment of human bladder carcinoma cells. J Histochem Cytochem. 58:635–651. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karasawa S, Azuma M, Kasama T, et al: Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Mol Pharmacol. 83:613–620. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dranka BP, Hill BG and Darley-Usmar VM: Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic Biol Med. 48:905–914. 2010. View Article : Google Scholar : PubMed/NCBI | |
Benz CC, Atsriku C, Yau C, et al: Novel pathways associated with quinone-induced stress in breast cancer cells. Drug Metab Rev. 38:601–613. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bolton JL, Trush MA, Penning TM, Dryhurst G and Monks TJ: Role of quinones in toxicology. Chem Res Toxicol. 13:135–160. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lamson DW, Gu YH, Plaza SM, Brignall MS, Brinton CA and Sadlon AE: The vitamin C: vitamin K3 system - enhancers and inhibitors of the anticancer effect. Altern Med Rev. 15:345–351. 2010.PubMed/NCBI | |
Ambs S and Glynn SA: Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer. Cell Cycle. 10:619–624. 2011. View Article : Google Scholar | |
Lee J, Giordano S and Zhang J: Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 441:523–540. 2012. View Article : Google Scholar : PubMed/NCBI | |
Doulias PT, Tenopoulou M, Greene JL, Raju K and Ischiropoulos H: Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal. 6:rs12013. View Article : Google Scholar : PubMed/NCBI | |
Lusini L, Tripodi SA, Rossi R, et al: Altered glutathione anti-oxidant metabolism during tumor progression in human renal-cell carcinoma. Int J Cancer. 91:55–59. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fitzgerald JP, Nayak B, Shanmugasundaram K, et al: Nox4 mediates renal cell carcinoma cell invasion through hypoxia-induced interleukin 6- and 8- production. PLoS One. 7:e307122012. View Article : Google Scholar : PubMed/NCBI | |
Abdelmohsen K: Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: Role of glutathione and tyrosine phosphatases. J Biol Chem. 278:38360–38367. 2003. View Article : Google Scholar | |
Suhara Y, Hanada N, Okitsu T, et al: Structure-activity relationship of novel menaquinone-4 analogues: modification of the side chain affects their biological activities. J Med Chem. 55:1553–1558. 2012. View Article : Google Scholar | |
Suhara Y, Watanabe M, Motoyoshi S, et al: Synthesis of new vitamin K analogues as steroid and xenobiotic receptor (SXR) agonists: insights into the biological role of the side chain part of vitamin K. J Med Chem. 54:4918–4922. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mazurek S: Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 43:969–980. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong N, De Melo J and Tang D: PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol. 2013:2425132013. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang Z, Wang B, Wang Y and Hu X: Vitamin K(3) and K(5) are inhibitors of tumor pyruvate kinase M2. Cancer Lett. 316:204–210. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anastasiou D, Poulogiannis G, Asara JM, et al: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zaunmuller T, Kelly DJ, Glockner FO and Unden G: Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria. Microbiology. 152:2443–2453. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sakai C, Tomitsuka E, Esumi H, Harada S and Kita K: Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells. Biochim Biophys Acta. 1820:643–651. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tomitsuka E, Kita K and Esumi H: The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann NY Acad Sci. 1201:44–49. 2010. View Article : Google Scholar | |
Tomitsuka E, Kita K and Esumi H: An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system - a unique mitochondrial energy metabolism in tumour microenvironments. J Biochem. 152:171–183. 2012. View Article : Google Scholar | |
Tomlinson IP, Alam NA, Rowan AJ, et al: Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 30:406–410. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Valera V, Sourbier C, et al: A novel fumarate hydratase-deficient HLRCC kidney cancer cell line, UOK268: a model of the Warburg effect in cancer. Cancer Genet. 205:377–390. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ternette N, Yang M, Laroyia M, et al: Inhibition of mitochondrial aconitase by succination in fumarate hydratase deficiency. Cell Rep. 3:689–700. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barrios-Rodiles M, Brown KR, Ozdamar B, et al: High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 307:1621–1625. 2005. View Article : Google Scholar : PubMed/NCBI | |
Behrends C, Sowa ME, Gygi SP and Harper JW: Network organization of the human autophagy system. Nature. 466:68–76. 2010. View Article : Google Scholar : PubMed/NCBI | |
Perez Jurado LA, Wang YK, Francke U and Cruces J: TBL2, a novel transducin family member in the WBS deletion: characterization of the complete sequence, genomic structure, transcriptional variants and the mouse ortholog. Cytogenet Cell Genet. 86:277–284. 1999. | |
Tieu Q and Nunnari J: Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol. 151:353–366. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tieu Q, Okreglak V, Naylor K and Nunnari J: The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol. 158:445–452. 2002. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Zhang C, Luo Q, et al: A novel WD-repeat protein, WDR26, inhibits apoptosis of cardiomyocytes induced by oxidative stress. Free Radic Res. 46:777–784. 2012. View Article : Google Scholar : PubMed/NCBI | |
Blattmann P, Schuberth C, Pepperkok R and Runz H: RNAi-based functional profiling of loci from blood lipid genome-wide association studies identifies genes with cholesterol-regulatory function. PLoS Genet. 9:e10033382013. View Article : Google Scholar | |
Rothblat GH, De la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL and Phillips MC: Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 40:781–796. 1999.PubMed/NCBI | |
Hoekstra M, van Berkel TJ and van Eck M: Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism. World J Gastroenterol. 16:5916–5924. 2010.PubMed/NCBI | |
Maitra U and Li L: Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Arterioscler Thromb Vasc Biol. 33:24–33. 2013. View Article : Google Scholar : PubMed/NCBI | |
Saddar S, Carriere V, Lee WR, et al: Scavenger receptor class B type I is a plasma membrane cholesterol sensor. Circ Res. 112:140–151. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crestani M, De Fabiani E, Caruso D, et al: LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochem Soc Trans. 32:92–96. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tu K, Zheng X, Yin G, Zan X, Yao Y and Liu Q: Evaluation of Fbxw7 expression and its correlation with expression of SREBP-1 in a mouse model of NAFLD. Mol Med Rep. 6:525–530. 2012.PubMed/NCBI | |
Kumadaki S, Karasawa T, Matsuzaka T, et al: Inhibition of ubiquitin ligase F-box and WD repeat domain-containing 7alpha (Fbw7alpha) causes hepatosteatosis through Kruppel-like factor 5 (KLF5)/peroxisome proliferator-activated receptor gamma2 (PPARgamma2) pathway but not SREBP-1c protein in mice. J Biol Chem. 286:40835–40846. 2011. View Article : Google Scholar | |
Ntambi JM, Miyazaki M and Dobrzyn A: Regulation of stearoyl-CoA desaturase expression. Lipids. 39:1061–1065. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ban MR, Zou GY, et al: Polygenic determinants of severe hypertriglyceridemia. Hum Mol Genet. 17:2894–2899. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kathiresan S, Melander O, Guiducci C, et al: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 40:189–197. 2008. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Tabb MM and Blumberg B: Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer. 9:32009. View Article : Google Scholar : PubMed/NCBI | |
Pani G, Galeotti T and Chiarugi P: Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 29:351–378. 2010. | |
Montero J, Morales A, Llacuna L, et al: Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res. 68:5246–5256. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Ruiz C, Mari M, Colell A, et al: Mitochondrial cholesterol in health and disease. Histol Histopathol. 24:117–132. 2009. | |
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, et al: Ketones and lactate ‘fuel’ tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 9:3506–3514. 2010. | |
Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al: The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 9:1960–1971. 2010. View Article : Google Scholar | |
Behrend L, Henderson G and Zwacka RM: Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 31:1441–1444. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E and Moreno-Sánchez R: The causes of cancer revisited: ‘Mitochondrial malignancy’ and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med. 31:145–170. 2010. | |
Sone H, Akanuma H and Fukuda T: Oxygenomics in environmental stress. Redox Rep. 15:98–114. 2010. View Article : Google Scholar |