A dynamic interplay between alternative polyadenylation and microRNA regulation: Implications for cancer (Review)
- Authors:
- Jindan An
- Xiaodong Zhu
- Hongwei Wang
- Xiudong Jin
-
Affiliations: Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, P.R. China, Department of Pathology, Mudanjiang Medical University, Mudanjiang, P.R. China - Published online on: August 1, 2013 https://doi.org/10.3892/ijo.2013.2047
- Pages: 995-1001
This article is mentioned in:
Abstract
Venter JC, Adams MD, Myers EW, et al: The sequence of the human genome. Science. 291:1304–1351. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lander ES, Linton LM, Birren B, et al: Initial sequencing and analysis of the human genome. Nature. 409:860–921. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mignone F, Gissi C, Liuni S and Pesole G: Untranslated regions of mRNAs. Genome Biol. 3:Reviews 0004. 2002. View Article : Google Scholar | |
Maniatis T and Reed R: An extensive network of coupling among gene expression machines. Nature. 416:499–506. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lackner DH, Beilharz TH, Marguerat S, et al: A network of multiple regulatory layers shapes gene expression in fission yeast. Mol Cell. 26:145–155. 2007. View Article : Google Scholar : PubMed/NCBI | |
de la Grange P, Dutertre M, Correa M and Auboeuf D: A new advance in alternative splicing databases: from catalogue to detailed analysis of regulation of expression and function of human alternative splicing variants. BMC Bioinformatics. 8:1802007.PubMed/NCBI | |
Wang ET, Sandberg R, Luo S, et al: Alternative isoform regulation in human tissue transcriptomes. Nature. 456:470–476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tian B, Pan Z and Lee JY: Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res. 17:156–165. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hon LS and Zhang Z: The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 8:R1662007. View Article : Google Scholar : PubMed/NCBI | |
Farh KK, Grimson A, Jan C, et al: The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 310:1817–1821. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ro S, Park C, Young D, Sanders KM and Yan W: Tissue-dependent paired expression of miRNAs. Nucleic Acids Res. 35:5944–5953. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez A, Griffiths-Jones S, Ashurst JL and Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI | |
Linsley PS, Schelter J, Burchard J, et al: Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 27:2240–2252. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kertesz S, Kerenyi Z, Merai Z, et al: Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res. 34:6147–6157. 2006. | |
Gilat R and Shweiki D: A novel function for alternative polyadenylation as a rescue pathway from NMD surveillance. Biochem Biophys Res Commun. 353:487–492. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lewis BP, Green RE and Brenner SE: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA. 100:189–192. 2003. View Article : Google Scholar : PubMed/NCBI | |
Makeyev EV, Zhang J, Carrasco MA and Maniatis T: The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 27:435–448. 2007. View Article : Google Scholar : PubMed/NCBI | |
Durand C, Roeth R, Dweep H, et al: Alternative splicing and nonsense-mediated RNA decay contribute to the regulation of SHOX expression. PloS One. 6:e181152011. View Article : Google Scholar : PubMed/NCBI | |
Li XL, Andersen JB, Ezelle HJ, Wilson GM and Hassel BA: Post-transcriptional regulation of RNase-L expression is mediated by the 3′-untranslated region of its mRNA. J Biol Chem. 282:7950–7960. 2007. | |
Rimokh R, Berger F, Bastard C, et al: Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle-cell lymphomas and t(11q13)-associated leukemias. Blood. 83:3689–3696. 1994. | |
von Roretz C and Gallouzi IE: Decoding ARE-mediated decay: is microRNA part of the equation? J Cell Biol. 181:189–194. 2008.PubMed/NCBI | |
Muhlrad D and Parker R: Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA. 5:1299–1307. 1999. | |
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI | |
Friedman RC, Farh KK, Burge CB and Bartel D: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yekta S, Shih IH and Bartel DP: MicroRNA-directed cleavage of HOXB8 mRNA. Science. 304:594–596. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pillai RS, Bhattacharyya SN, Artus CG, et al: Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 309:1573–1576. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Fan J and Belasco JG: MicroRNAs direct rapid dead-enylation of mRNA. Proc Natl Acad Sci USA. 103:4034–4039. 2006. View Article : Google Scholar : PubMed/NCBI | |
Didiano D and Hobert O: Molecular architecture of a miRNA-regulated 3′ UTR. RNA. 14:1297–1317. 2008.PubMed/NCBI | |
Stark A, Brennecke J, Bushati N, Russell RB and Cohen SM: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell. 123:1133–1146. 2005.PubMed/NCBI | |
Kertesz M, Iovino N, Unnerstall U, Gaul U and Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 39:1278–1284. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lopez F, Granjeaud S, Ara T, Ghattas B and Gautheret D: The disparate nature of ‘intergenic’ polyadenylation sites. RNA. 12:1794–1801. 2006. | |
Legendre M and Gautheret D: Sequence determinants in human polyadenylation site selection. BMC Genomics. 4:72003. View Article : Google Scholar : PubMed/NCBI | |
Kubo T, Wada T, Yamaguchi Y, Shimizu A and Handa H: Knockdown of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs. Nucleic Acids Res. 34:6264–6271. 2006.PubMed/NCBI | |
Edwalds-Gilbert G, Veraldi KL and Milcarek C: Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 25:2547–2561. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ara T, Lopez F, Ritchie W, Benech P and Gautheret D: Conservation of alternative polyadenylation patterns in mammalian genes. BMC Genomics. 7:1892006. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Lee JY and Tian B: Biased alternative polyadenylation in human tissues. Genome Biol. 6:R1002005. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Wu CF, Zhou X and Kuang J: Alternative polyadenylation produces two major transcripts of Alix. Arch Biochem Biophys. 465:328–335. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moucadel V, Lopez F, Ara T, Benech P and Gautheret D: Beyond the 3′ end: experimental validation of extended transcript isoforms. Nucleic Acids Res. 35:1947–1957. 2007. | |
Lutz CS: Alternative polyadenylation: a twist on mRNA 3′ end formation. ACS Chem Biol. 3:609–617. 2008.PubMed/NCBI | |
Heuze-Vourc’h N, Leblond V and Courty Y: Complex alternative splicing of the hKLK3 gene coding for the tumor marker PSA (prostate-specific-antigen). Eur J Biochem. 270:706–714. 2003.PubMed/NCBI | |
Liu H and Johnson EM: Distinct proteins encoded by alternative transcripts of the PURG gene, located contrapodal to WRN on chromosome 8, determined by differential termination/polyadenylation. Nucleic Acids Res. 30:2417–2426. 2002. View Article : Google Scholar | |
Yu M, Sha H, Gao Y, Zeng H, Zhu M and Gao X: Alternative 3′ UTR polyadenylation of Bzw1 transcripts display differential translation efficiency and tissue-specific expression. Biochem Biophys Res Commun. 345:479–485. 2006. | |
Hughes TA: Regulation of gene expression by alternative untranslated regions. Trends Genet. 22:119–122. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stojic J, Stohr H and Weber BH: Three novel ABCC5 splice variants in human retina and their role as regulators of ABCC5 gene expression. BMC Mol Biol. 8:422007. View Article : Google Scholar : PubMed/NCBI | |
Hager S, Frame FM, Collins AT, Burns JE and Maitland NJ: An internal polyadenylation signal substantially increases expression levels of lentivirus-delivered transgenes but has the potential to reduce viral titer in a promoter-dependent manner. Hum Gene Ther. 19:840–850. 2008. View Article : Google Scholar | |
Legendre M, Ritchie W, Lopez F and Gautheret D: Differential repression of alternative transcripts: a screen for miRNA targets. PLoS Comput Biol. 2:e432006. View Article : Google Scholar : PubMed/NCBI | |
Tan S, Guo J, Huang Q, et al: Retained introns increase putative microRNA targets within 3′ UTRs of human mRNA. FEBS Lett. 581:1081–1086. 2007.PubMed/NCBI | |
Sivakumaran TA, Resendes BL, Robertson NG, Giersch AB and Morton CC: Characterization of an abundant COL9A1 transcript in the cochlea with a novel 3′ UTR: expression studies and detection of miRNA target sequence. J Assoc Res Otolaryngol. 7:160–172. 2006.PubMed/NCBI | |
Majoros WH and Ohler U: Spatial preferences of microRNA targets in 3′ untranslated regions. BMC Genomics. 8:1522007.PubMed/NCBI | |
Hla T, Bishop-Bailey D, Liu CH, Schaefers HJ and Trifan OC: Cyclooxygenase-1 and -2 isoenzymes. Int J Biochem Cell Biol. 31:551–557. 1999. View Article : Google Scholar | |
Harper KA and Tyson-Capper AJ: Complexity of COX-2 gene regulation. Biochem Soc Trans. 36:543–545. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hall-Pogar T, Zhang H, Tian B and Lutz CS: Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res. 33:2565–2579. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sawaoka H, Dixon DA, Oates JA and Boutaud O: Tristetraprolin binds to the 3′-untranslated region of cyclooxygenase-2 mRNA. A polyadenylation variant in a cancer cell line lacks the binding site. J Biol Chem. 278:13928–13935. 2003. | |
Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H and Dey SK: MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci USA. 104:15144–15149. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sandberg R, Neilson JR, Sarma A, Sharp PA and Burge CB: Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science. 320:1643–1647. 2008.PubMed/NCBI | |
Zlotorynski E and Agami R: A PASport to cellular proliferation. Cell. 134:208–210. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C and Pillai B: MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res. 36:6318–6332. 2008.PubMed/NCBI | |
Gammell P: MicroRNAs: recently discovered key regulators of proliferation and apoptosis in animal cells: identification of miRNAs regulating growth and survival. Cytotechnology. 53:55–63. 2007. View Article : Google Scholar | |
Jovanovic M and Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene. 25:6176–6187. 2006. View Article : Google Scholar : PubMed/NCBI | |
O’Rourke JR, Swanson MS and Harfe BD: MicroRNAs in mammalian development and tumorigenesis. Birth Defects Res C Embryo Today. 78:172–179. 2006. | |
Bandres E, Agirre X, Ramirez N, Zarate R and Garcia-Foncillas J: MicroRNAs as cancer players: potential clinical and biological effects. DNA Cell Biol. 26:273–282. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dixon DA: Dysregulated post-transcriptional control of COX-2 gene expression in cancer. Curr Pharm Des. 10:635–646. 2004. View Article : Google Scholar : PubMed/NCBI | |
Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S and DuBois RN: Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 107:1183–1188. 1994.PubMed/NCBI | |
Kutchera W, Jones DA, Matsunami N, et al: Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA. 93:4816–4820. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ristimaki A, Sivula A, Lundin J, et al: Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 62:632–635. 2002.PubMed/NCBI | |
Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H and Ristimaki A: Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58:4997–5001. 1998.PubMed/NCBI | |
Yoshimura R, Sano H, Masuda C, et al: Expression of cyclooxygenase-2 in prostate carcinoma. Cancer. 89:589–596. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tucker ON, Dannenberg AJ, Yang EK, et al: Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 59:987–990. 1999.PubMed/NCBI | |
Ristimaki A, Nieminen O, Saukkonen K, Hotakainen K, Nordling S and Haglund C: Expression of cyclooxygenase-2 in human transitional cell carcinoma of the urinary bladder. Am J Pathol. 158:849–853. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ristimaki A, Honkanen N, Jankala H, Sipponen P and Harkonen M: Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res. 57:1276–1280. 1997.PubMed/NCBI | |
Ratnasinghe D, Tangrea J, Roth MJ, et al: Expression of cyclooxygenase-2 in human squamous cell carcinoma of the esophagus; an immunohistochemical survey. Anticancer Res. 19:171–174. 1999.PubMed/NCBI | |
Chan G, Boyle JO, Yang EK, et al: Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res. 59:991–994. 1999.PubMed/NCBI | |
Sherr CJ: Mammalian G1 cyclins. Cell. 73:1059–1065. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wiestner A, Tehrani M, Chiorazzi M, et al: Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood. 109:4599–4606. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Wang C, Wang M, et al: A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 182:509–517. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nosho K, Kawasaki T, Chan AT, et al: Cyclin D1 is frequently overexpressed in microsatellite unstable colorectal cancer, independent of CpG island methylator phenotype. Histopathology. 53:588–598. 2008. View Article : Google Scholar : PubMed/NCBI | |
Elsheikh S, Green AR, Aleskandarany MA, et al: CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat. 109:325–335. 2008. View Article : Google Scholar : PubMed/NCBI | |
Radovic S, Babic M, Doric M, et al: Non-small cell lung carcinoma: cyclin D1, bcl-2, p53, Ki-67 and HER-2 proteins expression in resected tumors. Bosn J Basic Med Sci. 7:205–211. 2007.PubMed/NCBI | |
Shakir R, Ngo N and Naresh KN: Correlation of cyclin D1 transcript levels, transcript type and protein expression with proliferation and histology among mantle cell lymphoma. J Clin Pathol. 61:920–927. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen RW, Bemis LT, Amato CM, et al: Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 112:822–829. 2008. View Article : Google Scholar : PubMed/NCBI |