From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment (Review)
- Authors:
- Roberta Piva
- Demetrios A. Spandidos
- Roberto Gambari
-
Affiliations: Department of Biomedical and Specialty Surgical Sciences, Ferrara University, Ferrara, Italy, Department of Clinical Virology, University of Crete School of Medicine, Heraklion, Crete, Greece, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy - Published online on: August 12, 2013 https://doi.org/10.3892/ijo.2013.2059
- Pages: 985-994
-
Copyright: © Piva et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Filipowicz W, Jaskiewicz L, Kolb FA and Pillai RS: Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struc Biol. 15:331–341. 2005. View Article : Google Scholar : PubMed/NCBI | |
He L and Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kozomara A and Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39:D152–D157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI | |
Sontheimer EJ and Carthew RW: Silence from within: endogenous siRNAs and miRNAs. Cell. 122:9–12. 2005. View Article : Google Scholar : PubMed/NCBI | |
Taccioli C, Fabbri E, Visone R, Volinia S, Calin GA, Fong LY, et al: UCbase and miRfunc: a database of ultracon-served sequences and microRNA function. Nucleic Acids Res. 37:D41–D48. 2009. View Article : Google Scholar : PubMed/NCBI | |
Griffiths-Jones S: miRBase: the microRNA sequence database. Methods Mol Biol. 342:129–138. 2006.PubMed/NCBI | |
Witwer KW: Data submission and quality in microarray-based microRNA profiling. Clin Chem. 59:392–400. 2013. View Article : Google Scholar | |
Sablok G, Milev I, Minkov G, Minkov I, Varotto C, Yahubyan G and Baev V: isomiRex: Web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett. Jul 4–2013.(Epub ahead of print). | |
Russo F, Di Bella S, Nigita G, Macca V, Laganà A, Giugno R, Pulvirenti A and Ferro A: miRandola: extracellular circulating microRNAs database. PLoS One. 7:e477862012. View Article : Google Scholar | |
Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M and Stoffel M: Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35:2885–2892. 2007.PubMed/NCBI | |
Dalmay T: Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem. 54:29–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G and Liu Y: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37:D98–D104. 2009. View Article : Google Scholar : PubMed/NCBI | |
Subramanian S and Steer CJ: MicroRNAs as gatekeepers of apoptosis. J Cell Physiology. 223:89–98. 2010. | |
Wang YM and Blelloch R: Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res. 69:4093–4096. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Garcia I and Miska EA: MicroRNA functions in animal development and human disease. Development. 132:4653–4662. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tsai LM and Yu D: MicroRNAs in common diseases and potential therapeutic applications. Clin Exp Pharmacol Physiol. 7:102–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hemida MG, Ye X, Thair S and Yang D: Exploiting the therapeutic potential of microRNAs in viral diseases: expectations and limitations. Mol Diagn Ther. 14:271–282. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kota SK and Balasubramanian S: Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today. 15:733–740. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bader AG, Brown D and Winkler M: The promise of microRNA replacement therapy. Cancer Res. 70:7027–7030. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sibley CR, Seow Y and Wood MJ: Novel RNA-based strategies for therapeutic gene silencing. Mol Ther. 18:466–476. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ge YF, Sun J, Jin CJ, Cao BQ, Jiang ZF and Shao JF: AntagomiR-27a targets FOXO3a in glioblastoma and suppresses U87 cell growth in vitro and in vivo. Asian Pac J Cancer Prev. 14:963–968. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rather MI, Nagashri MN, Swamy SS, Gopinath KS and Kumar A: Oncogenic microRNA-down-regulates tumor suppressor CDC73 and promotes oral squamous cell carcinoma cell proliferation: implications for cancer therapeutics. J Biol Chem. 288:608–618. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W, Zhou Y, Ou Y, Lin X, Lin Y, Xu D, Zhou Y and Yan G: Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer. 10:592011. View Article : Google Scholar : PubMed/NCBI | |
Haug BH, Henriksen JR, Buechner J, Geerts D, Tømte E, Kogner P, Martinsson T, Flægstad T, Sveinbjørnsson B and Einvik C: MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma. Carcinogenesis. 32:1005–1012. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, Liao Q, Guo X, Wang R, Li X, Zeng F, Wu M and Li G: Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res. 1390:21–32. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW and Weinberg RA: Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 28:341–347. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, De Maria R, Spagnoli LG, Farace MG and Ciafrè SA: The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One. 3:e40292008. View Article : Google Scholar | |
Scheibner KA, Teaboldt B, Hauer MC, Chen X, Cherukuri S, Guo Y, Kelley SM, Liu Z, Baer MR, Heimfeld S and Civin CI: MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3θ. PLoS One. 7:e508952012.PubMed/NCBI | |
Endo H, Muramatsu T, Furuta M, Uzawa N, Pimkhaokham A, Amagasa T, Inazawa J and Kozaki K: Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer. Carcinogenesis. 34:560–569. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Ahn J, Guo D, Votaw JR and Shim H: MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res. 30:1008–1016. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thomas M, Lange-Grünweller K, Weirauch U, Gutsch D, Aigner A, Grünweller A and Hartmann RK: The proto-oncogene Pim-1 is a target of miR-33a. Oncogene. 31:918–928. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK and Aigner A: MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 71:5214–5224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D and Bader AG: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 70:5923–5930. 2010. View Article : Google Scholar : PubMed/NCBI | |
Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG and Slack FJ: Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 19:1116–1122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, Lee LJ and Nana-Sinkam SP: Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids. 2:e842013. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P, Mims A, Klisovic R, Walker AR, Chan KK, Blum W, Perrotti D, Byrd JC, Bloomfield CD, Caligiuri MA, Lee RJ, Garzon R, Muthusamy N, Lee LJ and Marcucci G: Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res. 19:2355–2367. 2013. | |
Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH and Agami R: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 124:1169–1181. 2006. View Article : Google Scholar | |
Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH and Agami R: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol. 604:17–46. 2007. View Article : Google Scholar | |
Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Puré E and Agami R: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 10:202–210. 2008. View Article : Google Scholar : PubMed/NCBI | |
Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA and Farace MG: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 282:23716–23724. 2007. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL and Weinberg RA: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 137:1032–1046. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hurst DR, Edmonds MD and Welch DR: Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 69:7495–7498. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wotschofsky Z, Liep J, Meyer HA, Jung M, Wagner I, Disch AC, Schaser KD, Melcher I, Kilic E, Busch J, Weikert S, Miller K, Erbersdobler A, Mollenkopf HJ and Jung K: Identification of metastamirs as metastasis-associated microRNAs in clear cell renal cell carcinomas. Int J Biol Sci. 8:1363–1374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D and Schiemann WP: TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest. 123:150–163. 2013. | |
Welch DR and Hurst DR: Unraveling the ‘TGF-β paradox’ one metastamir at a time. Breast Cancer Res. 15:3052013. | |
Moldovan L, Batte K, Wang Y, Wisler J and Piper M: Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods Mol Biol. 1024:129–145. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Liang H, Zhang J, Zen K and Zhang CY: Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 3:28–37. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kosaka N and Ochiya T: Unraveling the mystery of cancer by secretory microRNA: horizontal microRNA transfer between living cells. Front Genet. 2:972011.PubMed/NCBI | |
Chen X, Liang H, Zhang J, Zen K and Zhang CY: Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22:125–132. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran S and Palanisamy V: Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip Rev RNA. 3:286–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muralidharan-Chari V, Clancy JW, Sedgwick A and D’Souza-Schorey C: Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci1. 23:1603–1611. 2010. View Article : Google Scholar : PubMed/NCBI | |
Piovan C, Palmieri D, Di Leva G, Braccioli L, Casalini P, Nuovo G, Tortoreto M, Sasso M, Plantamura I, Triulzi T, Taccioli C, Tagliabue E, Iorio MV and Croce CM: Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol. 6:458–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee YM, Lee JY, Ho CC, Hong QS, Yu SL, Tzeng CR, Yang PC and Chen HW: miRNA-34b as a tumor suppressor in estrogen-dependent growth of breast cancer cells. Breast Cancer Res. 13:R1162011. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV and Croce CM: Causes and consequences of microRNA dysregulation. Cancer J. 18:215–222. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Chen H, Lin Y, Hu Z, Mao Y, Wu J, Xu X, Zhu Y, Li S, Zheng X and Xie L: MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol Cells. 36:62–68. 2013. View Article : Google Scholar : PubMed/NCBI | |
He J, Deng Y, Yang G and Xie W: MicroRNA-203 down-regulation is associated with unfavorable prognosis in human glioma. J Surg Oncol. 108:121–125. 2013. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV and Croce CM: MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 27:5848–5856. 2009. View Article : Google Scholar : PubMed/NCBI | |
Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K and Croce CM: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA. 109:3024–3029. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, Jacob ST and Majumder S: Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem. 286:42292–42302. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shah MY and Calin GA: MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med. 3:562011. View Article : Google Scholar : PubMed/NCBI | |
Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF and Dornan D: miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 4(pt5)2011.PubMed/NCBI | |
Cochrane DR, Cittelly DM, Howe EN, Spoelstra NS, McKinsey EL, LaPara K, Elias A, Yee D and Richer JK: MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Horm Cancer. 1:306–319. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto N, Toyama T, Takahashi S, Sugiura H, Endo Y, Iwasa M, Fujii Y and Yamashita H: Distinct expressions of microRNAs that directly target estrogen receptor α in human breast cancer. Breast Cancer Res Treat. 130:331–339. 2011.PubMed/NCBI | |
Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF and Dornan D: TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 4:ra412011.PubMed/NCBI | |
Guttilla IK, Phoenix KN, Hong X, Tirnauer JS, Claffey KP and White BA: Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the estrogen receptor by microRNAs. Breast Cancer Res Treat. 132:75–85. 2012. View Article : Google Scholar | |
Gordanpour A, Stanimirovic A, Nam RK, Moreno CS, Sherman C, Sugar L and Seth A: miR-221 is down-regulated in TMPRSS2: ERG fusion-positive prostate cancer. Anticancer Res. 31:403–410. 2011.PubMed/NCBI | |
Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA and Stathopoulos EN: MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle. 10:507–517. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pelletier C, Speed WC, Paranjape T, Keane K, Blitzblau R, Hollestelle A, Safavi K, van den Ouweland A, Zelterman D, Slack FJ, Kidd KK and Weidhaas JB: Rare BRCA1 haplotypes including 3’UTR SNPs associated with breast cancer risk. Cell Cycle. 10:90–99. 2011. | |
Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM and Nephew KP: MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 30:1082–1097. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O, Riker AI and Tan M: MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 285:21496–21507. 2010. View Article : Google Scholar : PubMed/NCBI | |
Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, Iorio MV, Li M, Volinia S, Alder H, Nakamura T, Nuovo G, Liu Y, Nephew KP and Croce CM: MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst. 102:706–721. 2010. | |
Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI and Kovalchuk O: Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer. 127:1785–1794. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lambertini E, Lolli A, Vezzali F, Penolazzi L, Gambari R and Piva R: Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells. BMC Cancer. 12:4452012. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Wu J, Jia W, Gong C, Yu F, Ren Z, Chen K, He J and Su F: Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Onkologie. 34:675–680. 2011. View Article : Google Scholar : PubMed/NCBI | |
Velu CS and Grimes HL: Utilizing antagomiR (antisense microRNA) to knock down microRNA in murine bone marrow cells. Methods Mol Biol. 928:185–195. 2012.PubMed/NCBI | |
Poltronieri P, D’Urso PI, Mezzolla V and D’Urso OF: Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des. 81:79–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma D, Tao X, Gao F, Fan C and Wu D: miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncol Lett. 4:483–488. 2012.PubMed/NCBI | |
Nielsen PE, Egholm M, Berg RH and Buchardt O: Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 254:1497–1500. 1991. View Article : Google Scholar : PubMed/NCBI | |
Demidov VV and Frank-Kamenetskii MD: Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion. Methods. 23:108–122. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gambari R: Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des. 7:1839–1862. 2001. View Article : Google Scholar : PubMed/NCBI | |
Karkare S and Bhatnagar D: Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol. 71:575–586. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nielsen PE: Antisense peptide nucleic acids. Curr Opin Mol Ther. 2:282–287. 2002. | |
Soomets U, Hällbrink M and Langel U: Antisense properties of peptide nucleic acids. Front Biosci. 4:D782–D786. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ray A and Nordén B: Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J. 14:1041–1060. 2000.PubMed/NCBI | |
Nielsen PE: Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem. 8:545–550. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gambari R: Biological activity and delivery of peptide nucleic acids (PNA)-DNA chimeras for transcription factor decoy (TFD) pharmacotherapy. Curr Med Chem. 11:1253–1263. 2004. View Article : Google Scholar : PubMed/NCBI | |
Corradini R, Sforza S, Tedeschi T, Totsingan F and Marchelli R: Peptide nucleic acids with a structurally biased backbone: effects of conformational constraints and stereochemistry. Curr Top Med Chem. 7:681–694. 2007. View Article : Google Scholar | |
Sforza S, Tedeschi T, Calabretta A, Corradini R, Camerin C, Tonelli R, Pession A and Marchelli R: A peptide nucleic acid embedding a pseudopeptide nuclear localization sequence in the backbone behaves as a peptide mimic. Eur J Org Chem. 13:2441–2444. 2010. View Article : Google Scholar | |
Sforza S, Corradini R, Ghirardi S, Dossena A and Marchelli R: DNA binding of a D-Lysine-based chiral PNA: direction control and mismatch recognition. Eur J Org Chem. 16:2905–2913. 2000. View Article : Google Scholar | |
Sforza S, Tedeschi T, Corradini R and Marchelli R: Induction of helical handedness and DNA binding properties of peptide nucleic acids (PNAs) with two stereogenic centres. Eur J Org Chem. 35:5879–5885. 2007. View Article : Google Scholar | |
Tedeschi T, Sforza S, Corradini R and Marchelli R: Synthesis of new chiral PNAs bearing a dipeptide-mimic monomer with two lysine-derived stereogenic centres. Tetrahedron Lett. 46:8395–8399. 2005. View Article : Google Scholar | |
Dragulescu-Andrasi A, Zhou P, He G and Ly DH: Cell-permeable GPNA with appropriate backbone stereochemistry and spacing binds sequence-specifically to RNA. Chem Commun. 3:244–246. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N, Finotti A, Breveglieri G, Borgatti M, Corradini R, Marchelli R and Gambari R: Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int J Oncol. 41:2119–2127. 2012.PubMed/NCBI | |
Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A, Brognara E, Bianchi N, Manicardi A, Marchelli R and Corradini R: Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol. 82:1416–1429. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fabani MM and Gait MJ: miR-122 targeting with LNA/2′-O-methyloligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA. 14:336–346. 2008. | |
Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG, Smith KGC, et al: Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 38:4466–4475. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N, Brognara E, Finotti A, Breveglieri G, Borgatti M, Corradini R, Marchelli R and Gambari R: Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). Chem Med Chem. 6:2192–2202. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A, Bianchi N, Sforza S, Tedeschi T, Manicardi A, Marchelli R, Corradini R and Gambari R: miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics. 3:733–745. 2011. View Article : Google Scholar : PubMed/NCBI | |
Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N, Brognara E, Gambari R, Marchelli R and Corradini R: Cellular uptakes, biostabilities and anti-miR-210 activities of chiral arginine-PNAs in leukaemic K562 cells. Chembiochem. 13:1327–1337 | |
Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, Fu J, Zeng MS, Yun JP, Wu QL, Zeng YX and Shao JY: Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 13:R22011. View Article : Google Scholar : PubMed/NCBI |