1.
|
Janes KA and Lauffenburger DA: A
biological approach to computational models of proteomic networks.
Curr Opin Chem Biol. 10:73–80. 2006. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Miller-Jensen K, Janes KA, Brugge JS and
Lauffenburger DA: Common effector processing mediates cell-specific
responses to stimuli. Nature. 448:604–608. 2007. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Jordan JD, Landau EM and Iyengar R:
Signaling networks: the origins of cellular multitasking. Cell.
103:193–200. 2000. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Pawson T and Linding R: Network medicine.
FEBS Lett. 582:1266–1270. 2008. View Article : Google Scholar
|
5.
|
Vidal M, Cusick ME and Barabasi AL:
Interactome networks and human disease. Cell. 144:986–998. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6.
|
Vidal M: A unifying view of 21st century
systems biology. FEBS Lett. 583:3891–3894. 2009. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Barabasi AL and Oltvai ZN: Network
biology: understanding the cell’s functional organization. Nature
Rev Genet. 5:101–113. 2004.
|
8.
|
Ideker T and Sharan R: Protein networks in
disease. Genome Res. 18:644–652. 2008. View Article : Google Scholar
|
9.
|
Rual JF, Venkatesan K, Hao T, et al:
Towards a proteome-scale map of the human protein-protein
interaction network. Nature. 437:1173–1178. 2005. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Stelzl U, Worm U, Lalowski M, et al: A
human protein-protein interaction network: a resource for
annotating the proteome. Cell. 122:957–968. 2005.PubMed/NCBI
|
11.
|
Jeong H, Tombor B, Albert R, Oltvai ZN and
Barabasi AL: The large-scale organization of metabolic networks.
Nature. 407:651–654. 2000. View
Article : Google Scholar : PubMed/NCBI
|
12.
|
Chang RL, Xie L, Bourne PE and Palsson BO:
Drug off-target effects predicted using structural analysis in the
context of a metabolic network model. PLoS Comput Biol.
6:e10009382010. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Schlitt T and Brazma A: Current approaches
to gene regulatory network modelling. BMC Bioinformatics. 8(Suppl
6): S92007. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Zhao Y, He S, Liu C, et al: MicroRNA
regulation of messenger-like noncoding RNAs: a network of mutual
microRNA control. Trends Genet. 24:323–327. 2008. View Article : Google Scholar : PubMed/NCBI
|
15.
|
He X, He L and Hannon GJ: The guardian’s
little helper: microRNAs in the p53 tumor suppressor network.
Cancer Res. 67:11099–11101. 2007.
|
16.
|
Zhou Q, Chipperfield H, Melton DA and Wong
WH: A gene regulatory network in mouse embryonic stem cells. Proc
Natl Acad Sci USA. 104:16438–16443. 2007. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Barabasi AL and Albert R: Emergence of
scaling in random networks. Science. 286:509–512. 1999. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Albert R, Jeong H and Barabasi AL: Error
and attack tolerance of complex networks. Nature. 406:378–382.
2000. View
Article : Google Scholar : PubMed/NCBI
|
19.
|
Jeong H, Mason SP, Barabasi AL and Oltvai
ZN: Lethality and centrality in protein networks. Nature.
411:41–42. 2001. View
Article : Google Scholar : PubMed/NCBI
|
20.
|
Park J and Newman ME: Statistical
mechanics of networks. Phys Rev E Stat Nonlin Soft Matter Phys.
70:0661172004. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Albert R: Scale-free networks in cell
biology. J Cell Sci. 118:4947–4957. 2005. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Fraser HB, Hirsh AE, Steinmetz LM, Scharfe
C and Feldman MW: Evolutionary rate in the protein interaction
network. Science. 296:750–752. 2002. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Kim PJ, Lee DY, Kim TY, et al: Metabolite
essentiality elucidates robustness of Escherichia coli
metabolism. Proc Natl Acad Sci USA. 104:13638–13642. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24.
|
Zhang DY, Ye F, Gao L, et al: Proteomics,
pathway array and signaling network-based medicine in cancer. Cell
Div. 4:202009. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Ravasz E, Somera AL, Mongru DA, Oltvai ZN
and Barabasi AL: Hierarchical organization of modularity in
metabolic networks. Science. 297:1551–1555. 2002. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Han JD, Bertin N, Hao T, et al: Evidence
for dynamically organized modularity in the yeast protein-protein
interaction network. Nature. 430:88–93. 2004. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Barabasi AL, Gulbahce N and Loscalzo J:
Network medicine: a network-based approach to human disease. Nature
Rev Genet. 12:56–68. 2011. View
Article : Google Scholar : PubMed/NCBI
|
28.
|
Creixell P, Schoof EM, Erler JT and
Linding R: Navigating cancer network attractors for tumor-specific
therapy. Nat Biotechnol. 30:842–848. 2012. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Hwang S, Son SW, Kim SC, Kim YJ, Jeong H
and Lee D: A protein interaction network associated with asthma. J
Theor Biol. 252:722–731. 2008. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Jonsson PF and Bates PA: Global
topological features of cancer proteins in the human interactome.
Bioinformatics. 22:2291–2297. 2006. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Chuang HY, Lee E, Liu YT, Lee D and Ideker
T: Network-based classification of breast cancer metastasis. Mol
Syst Biol. 3:1402007. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Garcia M, Millat-Carus R, Bertucci F,
Finetti P, Birnbaum D and Bidaut G: Interactome-transcriptome
integration for predicting distant metastasis in breast cancer.
Bioinformatics. 28:672–678. 2012. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Pache RA, Zanzoni A, Naval J, Mas JM and
Aloy P: Towards a molecular characterisation of pathological
pathways. FEBS Lett. 582:1259–1265. 2008. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Chand Y and Alam MA: Network biology
approach for identifying key regulatory genes by expression based
study of breast cancer. Bioinformation. 8:1132–1138. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35.
|
Sonachalam M, Shen J, Huang H and Wu X:
Systems biology approach to identify gene network signatures for
colorectal cancer. Front Genet. 3:802012. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Breitkreutz D, Hlatky L, Rietman E and
Tuszynski JA: Molecular signaling network complexity is correlated
with cancer patient survivability. Proc Natl Acad Sci USA.
109:9209–9212. 2012. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Vogelstein B, Lane D and Levine AJ:
Surfing the p53 network. Nature. 408:307–310. 2000. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Goh KI, Cusick ME, Valle D, Childs B,
Vidal M and Barabasi AL: The human disease network. Proc Natl Acad
Sci USA. 104:8685–8690. 2007. View Article : Google Scholar
|
39.
|
Han W and Lo HW: Landscape of EGFR
signaling network in human cancers: biology and therapeutic
response in relation to receptor subcellular locations. Cancer
Lett. 318:124–134. 2012. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Laubenbacher R, Hower V, Jarrah A, et al:
A systems biology view of cancer. Biochim Biophys Acta.
1796:129–139. 2009.PubMed/NCBI
|
41.
|
Sharma SV and Settleman J: ErbBs in lung
cancer. Exp Cell Res. 315:557–571. 2009. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Chiang YJ, Difilippantonio MJ, Tessarollo
L, Morse HC and Hodes RJ: Exon 1 disruption alters tissue-specific
expression of mouse p53 and results in selective development of B
cell lymphomas. PLoS One. 7:e493052012. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Erler JT and Linding R: Network medicine
strikes a blow against breast cancer. Cell. 149:731–733. 2012.
View Article : Google Scholar : PubMed/NCBI
|
44.
|
Lee MJ, Ye AS, Gardino AK, et al:
Sequential application of anticancer drugs enhances cell death by
rewiring apoptotic signaling networks. Cell. 149:780–794. 2012.
View Article : Google Scholar : PubMed/NCBI
|
45.
|
Pilpel Y, Sudarsanam P and Church GM:
Identifying regulatory networks by combinatorial analysis of
promoter elements. Nat Genet. 29:153–159. 2001. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Bhan A, Galas DJ and Dewey TG: A
duplication growth model of gene expression networks.
Bioinformatics. 18:1486–1493. 2002. View Article : Google Scholar : PubMed/NCBI
|
47.
|
Pastor-Satorras R, Smith E and Sole RV:
Evolving protein interaction networks through gene duplication. J
Theor Biol. 222:199–210. 2003. View Article : Google Scholar : PubMed/NCBI
|
48.
|
Gilmartin AG, Bleam MR, Groy A, et al:
GSK1120212 (JTP-74057) is an inhibitor of MEK activity and
activation with favorable pharmacokinetic properties for sustained
in vivo pathway inhibition. Clin Cancer Res. 17:989–1000. 2011.
View Article : Google Scholar : PubMed/NCBI
|
49.
|
Duncan JS, Whittle MC, Nakamura K, et al:
Dynamic reprogramming of the kinome in response to targeted MEK
inhibition in triple-negative breast cancer. Cell. 149:307–321.
2012. View Article : Google Scholar : PubMed/NCBI
|
50.
|
Slamon DJ, Clark GM, Wong SG, Levin WJ,
Ullrich A and McGuire WL: Human breast cancer: correlation of
relapse and survival with amplification of the HER-2/neu oncogene.
Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI
|
51.
|
Hudis CA: Trastuzumab--mechanism of action
and use in clinical practice. N Engl J Med. 357:39–51. 2007.
View Article : Google Scholar : PubMed/NCBI
|
52.
|
Crawford A and Nahta R: Targeting Bcl-2 in
herceptin-resistant breast cancer cell lines. Curr Pharmacogenomics
Person Med. 9:184–190. 2011. View Article : Google Scholar : PubMed/NCBI
|
53.
|
Chan CH, Li CF, Yang WL, et al: The
Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis,
herceptin sensitivity, and tumorigenesis. Cell. 149:1098–1111.
2012. View Article : Google Scholar : PubMed/NCBI
|
54.
|
Figlin RA, Kaufmann I and Brechbiel J:
Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new
strategies for overcoming resistance to VEGFR and mTORC1
inhibitors. Int J Cancer. 133:788–796. 2013. View Article : Google Scholar : PubMed/NCBI
|
55.
|
Li L, Story M and Legerski RJ: Cellular
responses to ionizing radiation damage. Int J Radiat Oncol Biol
Phys. 49:1157–1162. 2001. View Article : Google Scholar : PubMed/NCBI
|
56.
|
Li YH, Wang X, Pan Y, Lee DH, Chowdhury D
and Kimmelman AC: Inhibition of non-homologous end joining repair
impairs pancreatic cancer growth and enhances radiation response.
PLoS One. 7:e395882012. View Article : Google Scholar : PubMed/NCBI
|
57.
|
Sonoda E, Hochegger H, Saberi A, Taniguchi
Y and Takeda S: Differential usage of non-homologous end-joining
and homologous recombination in double strand break repair. DNA
Repair. 5:1021–1029. 2006. View Article : Google Scholar : PubMed/NCBI
|
58.
|
Lhakhang TW and Chaudhry MA: Interactome
of radiation-induced microRNA-predicted target genes. Comp Funct
Genomics. 2012:5697312012. View Article : Google Scholar : PubMed/NCBI
|
59.
|
Ma L, Nie L, Liu J, et al: An
RNA-seq-based gene expression profiling of radiation-induced
tumorigenic mammary epithelial cells. Genomics Proteomics
Bioinformatics. 10:326–335. 2012. View Article : Google Scholar : PubMed/NCBI
|
60.
|
Lee YS, Oh JH, Yoon S, et al: Differential
gene expression profiles of radioresistant non-small-cell lung
cancer cell lines established by fractionated irradiation: tumor
protein p53-inducible protein 3 confers sensitivity to ionizing
radiation. Int J Radiat Oncol Biol Phys. 77:858–866. 2010.
View Article : Google Scholar
|
61.
|
Kalanxhi E and Dahle J: Genome-wide
microarray analysis of human fibroblasts in response to gamma
radiation and the radiation-induced bystander effect. Radiat Res.
177:35–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
62.
|
Kim KH, Yoo HY, Joo KM, et al: Time-course
analysis of DNA damage response-related genes after in vitro
radiation in H460 and H1229 lung cancer cell lines. Exp Mol Med.
43:419–426. 2011. View Article : Google Scholar : PubMed/NCBI
|
63.
|
Xu QY, Gao Y, Liu Y, Yang WZ and Xu XY:
Identification of differential gene expression profiles of
radioresistant lung cancer cell line established by fractionated
ionizing radiation in vitro. Chin Med J. 121:1830–1837.
2008.PubMed/NCBI
|
64.
|
Ding LH, Shingyoji M, Chen F, et al: Gene
expression profiles of normal human fibroblasts after exposure to
ionizing radiation: a comparative study of low and high doses.
Radiat Res. 164:17–26. 2005. View
Article : Google Scholar : PubMed/NCBI
|
65.
|
Rashi-Elkeles S, Elkon R, Shavit S, et al:
Transcriptional modulation induced by ionizing radiation: p53
remains a central player. Mol Oncol. 5:336–348. 2011. View Article : Google Scholar : PubMed/NCBI
|
66.
|
Tusher VG, Tibshirani R and Chu G:
Significance analysis of microarrays applied to the ionizing
radiation response. Proc Natl Acad Sci USA. 98:5116–5121. 2001.
View Article : Google Scholar : PubMed/NCBI
|
67.
|
Somosy Z: Radiation response of cell
organelles. Micron. 31:165–181. 2000. View Article : Google Scholar
|
68.
|
Cao N, Li S, Wang Z, et al:
NF-kappaB-mediated HER2 over-expression in radiation-adaptive
resistance. Radiat Res. 171:9–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
69.
|
Lee SY, Park HR, Cho NH, et al:
Identifying genes related to radiation resistance in oral squamous
cell carcinoma cell lines. Int J Oral Max Surg. 42:169–176. 2013.
View Article : Google Scholar : PubMed/NCBI
|
70.
|
Multhoff G and Radons J: Radiation,
inflammation, and immune responses in cancer. Front Oncol.
2:582012. View Article : Google Scholar : PubMed/NCBI
|
71.
|
Brown JM and Wilson WR: Exploiting tumour
hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004.
View Article : Google Scholar
|
72.
|
Moeller BJ, Cao Y, Li CY and Dewhirst MW:
Radiation activates HIF-1 to regulate vascular radiosensitivity in
tumors: role of reoxygenation, free radicals, and stress granules.
Cancer cell. 5:429–441. 2004. View Article : Google Scholar : PubMed/NCBI
|
73.
|
Moeller BJ and Dewhirst MW: HIF-1 and
tumour radiosensitivity. Br J Cancer. 95:1–5. 2006. View Article : Google Scholar
|
74.
|
Kitano H: Biological robustness. Nature
Rev Genet. 5:826–837. 2004. View Article : Google Scholar
|
75.
|
Russell RB and Aloy P: Targeting and
tinkering with interaction networks. Nat Chem Biol. 4:666–673.
2008. View Article : Google Scholar : PubMed/NCBI
|
76.
|
Shao L, Wang L, Wei Z, et al: Dynamic
network of transcription and pathway crosstalk to reveal molecular
mechanism of MGd-treated human lung cancer cells. PLoS One.
7:e319842012. View Article : Google Scholar : PubMed/NCBI
|
77.
|
Komurov K, Tseng JT, Muller M, et al: The
glucose-deprivation network counteracts lapatinib-induced toxicity
in resistant ErbB2-positive breast cancer cells. Mol Syst Biol.
8:5962012. View Article : Google Scholar : PubMed/NCBI
|
78.
|
Johnston S, Pippen J Jr, Pivot X, et al:
Lapatinib combined with letrozole versus letrozole and placebo as
first-line therapy for postmenopausal hormone receptor-positive
metastatic breast cancer. J Clin Oncol. 27:5538–5546. 2009.
View Article : Google Scholar
|
79.
|
Eschrich S, Zhang H, Zhao H, et al:
Systems biology modeling of the radiation sensitivity network: a
biomarker discovery platform. Int J Radiat Oncol Biol Phys.
75:497–505. 2009. View Article : Google Scholar : PubMed/NCBI
|
80.
|
Chiba M: Radiation-responsive
transcriptome analysis in human lymphoid cells. Radiat Prot
Dosimetry. 152:164–167. 2012. View Article : Google Scholar : PubMed/NCBI
|
81.
|
Stiubea-Cohen R, David R, Neumann Y, et
al: Effect of irradiation on cell transcriptome and proteome of rat
submandibular salivary glands. PLoS One. 7:e406362012. View Article : Google Scholar : PubMed/NCBI
|
82.
|
Russell JS, Brady K, Burgan WE, et al:
Gleevec-mediated inhibition of Rad51 expression and enhancement of
tumor cell radiosensitivity. Cancer Res. 63:7377–7383.
2003.PubMed/NCBI
|
83.
|
Raderschall E, Stout K, Freier S, Suckow
V, Schweiger S and Haaf T: Elevated levels of Rad51 recombination
protein in tumor cells. Cancer Res. 62:219–225. 2002.PubMed/NCBI
|
84.
|
Slupianek A, Hoser G, Majsterek I, et al:
Fusion tyrosine kinases induce drug resistance by stimulation of
homology-dependent recombination repair, prolongation of G(2)/M
phase, and protection from apoptosis. Mol Cell Biol. 22:4189–4201.
2002. View Article : Google Scholar
|