Stimulation of β-catenin and colon cancer cell growth by the KDM4B histone demethylase
- Authors:
- William L. Berry
- Tae-Dong Kim
- Ralf Janknecht
-
Affiliations: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA - Published online on: January 27, 2014 https://doi.org/10.3892/ijo.2014.2279
- Pages: 1341-1348
This article is mentioned in:
Abstract
Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar | |
Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chi P, Allis CD and Wang GG: Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 10:457–469. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kulis M and Esteller M: DNA methylation and cancer. Adv Genet. 70:27–56. 2010. View Article : Google Scholar | |
Dawson MA and Kouzarides T: Cancer epigenetics: from mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Black JC, Van Rechem C and Whetstine JR: Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 48:491–507. 2012. View Article : Google Scholar | |
Kooistra SM and Helin K: Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 13:297–311. 2012.PubMed/NCBI | |
Berry WL and Janknecht R: KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 73:2936–2942. 2013. View Article : Google Scholar : PubMed/NCBI | |
Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M and Shi Y: Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 125:467–481. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH and Helin K: The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature. 442:307–311. 2006. View Article : Google Scholar : PubMed/NCBI | |
Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J and Zhang Y: The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature. 442:312–316. 2006. View Article : Google Scholar | |
Fodor BD, Kubicek S, Yonezawa M, O’Sullivan RJ, Sengupta R, Perez-Burgos L, Opravil S, Mechtler K, Schotta G and Jenuwein T: Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 20:1557–1562. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shin S and Janknecht R: Diversity within the JMJD2 histone demethylase family. Biochem Biophys Res Commun. 353:973–977. 2007. View Article : Google Scholar : PubMed/NCBI | |
Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T and Reinberg D: Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J Biol Chem. 284:8395–8405. 2009. View Article : Google Scholar : PubMed/NCBI | |
Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, Dundr M, Garcia BA, Daujat S and Schneider R: Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin. 3:72010. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP and Yang ZQ: Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene. 28:4491–4500. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Jubb AM, Pike L, Buffa FM, Turley H, Baban D, Leek R, Gatter KC, Ragoussis J and Harris AL: The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res. 70:6456–6466. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kawazu M, Saso K, Tong KI, McQuire T, Goto K, Son DO, Wakeham A, Miyagishi M, Mak TW and Okada H: Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One. 6:e178302011. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Sun L, Li Q, Liang J, Yu W, Yi X, Yang X, Li Y, Han X, Zhang Y, Xuan C, Yao Z and Shang Y: Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci USA. 108:7541–7546. 2011. View Article : Google Scholar : PubMed/NCBI | |
Berry WL, Shin S, Lightfoot SA and Janknecht R: Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol. 41:1701–1706. 2012. | |
Gaughan L, Stockley J, Coffey K, O’Neill D, Jones DL, Wade M, Wright J, Moore M, Tse S, Rogerson L and Robson CN: KDM4B is a master regulator of the estrogen receptor signalling cascade. Nucleic Acids Res. 41:6892–6904. 2013. View Article : Google Scholar | |
Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Gunther T, Buettner R, Metzger E and Schule R: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 9:347–353. 2007. View Article : Google Scholar | |
Shin S and Janknecht R: Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun. 359:742–746. 2007. View Article : Google Scholar : PubMed/NCBI | |
Coffey K, Rogerson L, Ryan-Munden C, Alkharaif D, Stockley J, Heer R, Sahadevan K, O’Neill D, Jones D, Darby S, Staller P, Mantilla A, Gaughan L and Robson CN: The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res. 41:4433–4446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ and Ratcliffe PJ: Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J. 416:387–394. 2008. View Article : Google Scholar : PubMed/NCBI | |
Beyer S, Kristensen MM, Jensen KS, Johansen JV and Staller P: The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem. 283:36542–36552. 2008. View Article : Google Scholar | |
Kim TD, Oh S, Shin S and Janknecht R: Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS One. 7:e346182012. View Article : Google Scholar | |
Oh S, Shin S, Lightfoot SA and Janknecht R: 14-3-3 proteins modulate the ETS transcription factor ETV1 in prostate cancer. Cancer Res. 73:5110–5119. 2013. View Article : Google Scholar | |
Mooney SM, Grande JP, Salisbury JL and Janknecht R: Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry. 49:1–10. 2010. View Article : Google Scholar : PubMed/NCBI | |
Janknecht R: Regulation of the ER81 transcription factor and its coactivators by mitogen- and stress-activated protein kinase 1 (MSK1). Oncogene. 22:746–755. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dowdy SC, Mariani A and Janknecht R: HER2/Neu- and TAK1-mediated up-regulation of the transforming growth factor beta inhibitor Smad7 via the ETS protein ER81. J Biol Chem. 278:44377–44384. 2003. View Article : Google Scholar | |
Goel A and Janknecht R: Concerted activation of ETS protein ER81 by p160 coactivators, the acetyltransferase p300 and the receptor tyrosine kinase HER2/Neu. J Biol Chem. 279:14909–14916. 2004. View Article : Google Scholar : PubMed/NCBI | |
Papoutsopoulou S and Janknecht R: Phosphorylation of ETS transcription factor ER81 in a complex with its coactivators CREB-binding protein and p300. Mol Cell Biol. 20:7300–7310. 2000. View Article : Google Scholar : PubMed/NCBI | |
Knebel J, De Haro L and Janknecht R: Repression of transcription by TSGA/Jmjd1a, a novel interaction partner of the ETS protein ER71. J Cell Biochem. 99:319–329. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu J and Janknecht R: Regulation of the ETS transcription factor ER81 by the 90-kDa ribosomal S6 kinase 1 and protein kinase A. J Biol Chem. 277:42669–42679. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rossow KL and Janknecht R: The Ewing’s sarcoma gene product functions as a transcriptional activator. Cancer Res. 61:2690–2695. 2001. | |
Mooney SM, Goel A, D’Assoro AB, Salisbury JL and Janknecht R: Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J Biol Chem. 285:30443–30452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goel A and Janknecht R: Acetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu. Mol Cell Biol. 23:6243–6254. 2003. View Article : Google Scholar : PubMed/NCBI | |
Oh S and Janknecht R: Histone demethylase JMJD5 is essential for embryonic development. Biochem Biophys Res Commun. 420:61–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shin S, Oh S, An S and Janknecht R: ETS variant 1 regulates matrix metalloproteinase-7 transcription in LNCaP prostate cancer cells. Oncol Rep. 29:306–314. 2013.PubMed/NCBI | |
DiTacchio L, Bowles J, Shin S, Lim DS, Koopman P and Janknecht R: Transcription factors ER71/ETV2 and SOX9 participate in a positive feedback loop in fetal and adult mouse testis. J Biol Chem. 287:23657–23666. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shin S, Kim TD, Jin F, van Deursen JM, Dehm SM, Tindall DJ, Grande JP, Munz JM, Vasmatzis G and Janknecht R: Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81. Cancer Res. 69:8102–8110. 2009. View Article : Google Scholar | |
Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M, Jessen WJ, Freudenberg J, Chen X, Haigis K, Jegga AG, Kong S, Sakthivel B, Xu H, Reichling T, Azhar M, Boivin GP, Roberts RB, Bissahoyo AC, Gonzales F, Bloom GC, Eschrich S, Carter SL, Aronow JE, Kleimeyer J, Kleimeyer M, Ramaswamy V, Settle SH, Boone B, Levy S, Graff JM, Doetschman T, Groden J, Dove WF, Threadgill DW, Yeatman TJ, Coffey RJ Jr and Aronow BJ: Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol. 8:R1312007. View Article : Google Scholar | |
Kurashina K, Yamashita Y, Ueno T, Koinuma K, Ohashi J, Horie H, Miyakura Y, Hamada T, Haruta H, Hatanaka H, Soda M, Choi YL, Takada S, Yasuda Y, Nagai H and Mano H: Chromosome copy number analysis in screening for prognosis-related genomic regions in colorectal carcinoma. Cancer Sci. 99:1835–1840. 2008. View Article : Google Scholar : PubMed/NCBI | |
Clevers H and Nusse R: Wnt/beta-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yap KL and Zhou MM: Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol. 45:488–505. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mosimann C, Hausmann G and Basler K: Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 10:276–286. 2009. View Article : Google Scholar | |
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B and Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 281:1509–1512. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ and Hanski C: Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA. 96:1603–1608. 1999. View Article : Google Scholar | |
Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R and Ben-Ze’ev A: The Cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 96:5522–5527. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tetsu O and McCormick F: Beta-catenin regulates expression of Cyclin D1 in colon carcinoma cells. Nature. 398:422–426. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
Daujat S, Zeissler U, Waldmann T, Happel N and Schneider R: HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem. 280:38090–38095. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wagner EJ and Carpenter PB: Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 13:115–126. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eilers M and Eisenman RN: Myc’s broad reach. Genes Dev. 22:2755–2766. 2008. | |
Eferl R and Wagner EF: AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 3:859–868. 2003. View Article : Google Scholar : PubMed/NCBI | |
Smith DR, Myint T and Goh HS: Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br J Cancer. 68:407–413. 1993. View Article : Google Scholar : PubMed/NCBI | |
Magrisso IJ, Richmond RE, Carter JH, Pross CB, Gilfillen RA and Carter HW: Immunohistochemical detection of RAS, JUN, FOS, and p53 oncoprotein expression in human colorectal adenomas and carcinomas. Lab Invest. 69:674–681. 1993.PubMed/NCBI | |
Nateri AS, Spencer-Dene B and Behrens A: Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature. 437:281–285. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP and Li L: Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol. 180:1087–1100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suto R, Tominaga K, Mizuguchi H, Sasaki E, Higuchi K, Kim S, Iwao H and Arakawa T: Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Ther. 11:187–193. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bartkova J, Lukas J, Strauss M and Bartek J: The PRAD-1/Cyclin D1 oncogene product accumulates aberrantly in a subset of colorectal carcinomas. Int J Cancer. 58:568–573. 1994. View Article : Google Scholar | |
Hulit J, Wang C, Li Z, Albanese C, Rao M, Di Vizio D, Shah S, Byers SW, Mahmood R, Augenlicht LH, Russell R and Pestell RG: Cyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice. Mol Cell Biol. 24:7598–7611. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Chen L, Yang J, Ye T, Chen Y and Fang J: HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis. 33:1664–1673. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Chang R, Zhong J, Pandey A and Semenza GL: Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA. 109:E3367–E3376. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim TD, Shin S, Berry WL, Oh S and Janknecht R: The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem. 113:1368–1376. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK and Richard S: RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J. 31:1865–1878. 2012. View Article : Google Scholar : PubMed/NCBI | |
Young LC, McDonald DW and Hendzel MJ: Kdm4b histone demethylase is a DNA damage response protein and confers a survival advantage following gamma-irradiation. J Biol Chem. 288:21376–21388. 2013. View Article : Google Scholar | |
Slee RB, Steiner CM, Herbert BS, Vance GH, Hickey RJ, Schwarz T, Christan S, Radovich M, Schneider BP, Schindelhauer D and Grimes BR: Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene. 31:3244–3253. 2012. View Article : Google Scholar | |
Toyokawa G, Cho HS, Iwai Y, Yoshimatsu M, Takawa M, Hayami S, Maejima K, Shimizu N, Tanaka H, Tsunoda T, Field HI, Kelly JD, Neal DE, Ponder BA, Maehara Y, Nakamura Y and Hamamoto R: The histone demethylase JMJD2B plays an essential role in human carcinogenesis through positive regulation of cyclin-dependent kinase 6. Cancer Prev Res. 4:2051–2061. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ and Kouzarides T: Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 478:529–533. 2011. View Article : Google Scholar | |
Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW and Vakoc CR: RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 478:524–528. 2011. View Article : Google Scholar |