1.
|
Du T and Zamore PD: MicroPrimer: the
biogenesis and function of microRNA. Development. 132:4645–4652.
2005. View Article : Google Scholar : PubMed/NCBI
|
2.
|
He L and Hannon GJ: MicroRNAs: small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3.
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5.
|
Lawler S and Chiocca EA: Emerging
functions of microRNAs in glioblastoma. J Neurooncol. 92:297–306.
2009. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Lu J, Getz G, Miska EA, et al: MicroRNA
expression profiles classify human cancers. Nature. 2435:834–838.
2005. View Article : Google Scholar
|
7.
|
Pfeffer LM: Mechanisms of Interferon
Action. CRC Press; Boca Raton, FL: 1987
|
8.
|
Saito R, Mizuno M, Hatano M, et al: Two
different mechanisms of apoptosis resistance observed in
interferon-β induced apoptosis of human glioma cells. J Neurooncol.
67:273–280. 2004.
|
9.
|
Yoshino A, Katayama Y, Yokoyama T, et al:
Therapeutic implication of interferon regulatory factor 1 (IRF-1)
and IRF-2 in diffusely infiltrating astrocytomas (DIA): response to
IFN-β in glioblastoma cells and prognostic value for DIA. J
Neurooncol. 74:249–260. 2005.PubMed/NCBI
|
10.
|
Petska S, Langer AJ, Zoon K, et al:
Interferons and their action. Annu Rev Biochem. 56:727–777. 1987.
View Article : Google Scholar
|
11.
|
Taniguchi T and Takaoka A: The
interferon-alpha/beta system in antiviral responses: a multimodal
machinery of gene regulation by the IRF family of transcription
factors. Curr Opin Immunol. 14:111–116. 2002. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Biron CA: Interferon alpha and beta as
immune regulators - a new look. Immunity. 14:661–664. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13.
|
Revel M and Chebath J:
Interferon-activated genes. Trends Biochem Sci. 11:166–170. 1986.
View Article : Google Scholar
|
14.
|
Williams BR: Transcriptional regulation of
interferon-stimulated genes. Eur J Biochem. 200:1–11. 1991.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Yoshida J, Kajita Y, Wakabayashi T, et al:
Long-term follow-up results of 175 patients with malignant glioma:
importance of radical tumor resection and post-operative adjuvant
therapy with interferon, ACNU and radiation. Acta Neurochir.
127:55–59. 1994. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Tanaka T, Sugaya S, Kita K, et al:
Inhibition of cell viability by human IFN-β is mediated by
microRNA-431. Int J Oncol. 40:1470–1476. 2012.
|
17.
|
Packer RJ and Vezina G: Management of and
prognosis with medulloblastoma: therapy at a crossroads. Arch
Neurol. 65:1419–1424. 2008. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Ribi K, Relly C, landolt MA, et al:
Outcome of medulloblastoma in children: long-term complications and
quality of life. Neuropediatrics. 36:357–365. 2006. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Furnari FB, Fenton T, Bachoo RM, et al:
Malignant astrocytic glioma: genetics, biology, and paths to
treatment. Genes Dev. 21:2683–2710. 2007. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Cho WC: OncomiRs: the discovery and
progress of microRNAs in cancers. Mol Cancer. 6:602007. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Li KK, Pang JC, Ching AK, et al: miR-124
is frequently down-regulated in medulloblastoma and is a negative
regulator of SLC16A1. Hum Pathol. 40:1234–1243. 2009. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Silber J, Hashizume R, Felix T, et al:
Expression of miR-124 inhibits growth of medulloblastoma cells.
Neuro Oncol. 15:83–90. 2013. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Wu J, Qian J, Li C, et al: miR-129
regulates cell proliferation by downregulating Cdk6 expression.
Cell Cycle. 9:1809–1818. 2010. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Wang XM, Zhang SF, Cheng ZQ, et al:
MicroRNA383 regulates expression of PRDX3 in human
medulloblastomas. Zhonghua Bing Li Xue Za Zhi. 41:547–552. 2012.(In
Chinese).
|
27.
|
Zhao WH, Wu SQ and Zhang YD:
Downregulation of miR-124 promotes the growth and invasiveness of
glioblastoma cells involving upregulation of PPP1R13L. Int J Mol
Med. 32:101–107. 2013.PubMed/NCBI
|
28.
|
Lv Z and Yang L: miR-124 inhibits the
growth of glioblastoma through the downregulation of SOS1. Mol Med
Rep. 8:345–349. 2013.PubMed/NCBI
|
29.
|
Niu CS, Yang Y and Cheng CD: MiR-134
regulates the proliferation and invasion of glioblastoma cells by
reducing Nanog expression. Int J Oncol. 42:1533–1540.
2013.PubMed/NCBI
|
30.
|
Bier A, Giladi N, Kronfeld N, et al:
MicroRNA-137 is down-regulated in glioblastoma and inhibits the
stemness of glioma stem cells by targeting RTVP-1. Oncotarget.
4:665–676. 2013.PubMed/NCBI
|
31.
|
Chawla-Sarkar M, Leaman DW and Borden EC:
Preferential induction of apoptosis by interferon (IFN)-beta
compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in
melanoma cell lines. Clin Cancer Res. 7:1821–1831. 2001.PubMed/NCBI
|
32.
|
Chou YT, Lin HH, Lien YU, et al: EGFR
promotes lung tumori-genesis by activating miR-7 through a
Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor
ERF. Cancer Res. 70:8822–8831. 2010. View Article : Google Scholar
|
33.
|
Guo C, Sah JF, Beard L, et al: The
Non-coding RNA, miR-126, suppresses the growth of neoplastic cells
by targeting phosphatidylinositol 3-kinase signaling and is
frequently lost in colon cancers. Gene Chromosomes Cancer.
47:939–946. 2008. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Kefas B, Godlewski J, Comeau L, et al:
microRNA-7 inhibits the epidermal growth factor receptor and the
Akt pathway and is down-regulated in glioblastoma. Cancer Res.
68:3566–3572. 2008. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Teramo A, Gattazzo C, Passeri F, et al:
Intrinsic and extrinsic mechanisms contribute to maintain the
JAK/STAT pathway aberrantly activated in T-type large granular
lymphocyte leukemia. Blood. 121:3843–3854. S12013. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Gao W, Xu J, Liu L, et al: A
systematic-analysis of predicted miR-21 targets identifies a
signature for lung cancer. Biomed Pharmacother. 66:21–28. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37.
|
Kim MJ, Nam HJ, Kim HP, et al: OPB-31121,
a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway
and exhibits an antitumor activity in gastric cancer cells. Cancer
Lett. 335:145–152. 2013. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Yamamoto K, Mizutani Y, Nakanishi H, et
al: Significant antitumor activity of cationic multilamellar
liposomes containing human interferon-β gene in combination with
5-fluorouracil against human renal cell carcinoma. Int J Oncol.
33:565–571. 2008.
|
39.
|
Wakabayashi T, Hatano N, Kajita Y, et al:
Initial and maintenance combination treatment with interferon-beta,
MCNU (Ranimustine), and radiotherapy for patients with previously
untreated malignant glioma. J Neurooncol. 49:57–62. 2000.
View Article : Google Scholar : PubMed/NCBI
|
40.
|
Motomura K, Natsume A, Kishida Y, et al:
Benefits of interferon-β and temozolomide combination therapy for
newly diagnosed primary glioblastoma with the unmethylated MGMT
promoter. Cancer. 117:1721–1730. 2011.
|