1.
|
Stacker SA, Baldwin ME and Achen MG: The
role of tumor lymphangiogenesis in metastatic spread. FASEB J.
16:922–934. 2002. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Campbell LL and Polyak K: Breast tumor
heterogeneity: cancer stem cells or clonal evolution? Cell Cycle.
6:2332–2338. 2007. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Clarke MF, Dick JE, Dirks PB, Eaves CJ,
Jamieson CH, Jones DL, et al: Cancer stem cells - perspectives on
current status and future directions: AACR Workshop on cancer stem
cells. Cancer Res. 66:9339–9344. 2006. View Article : Google Scholar
|
4.
|
Van der Auwera I, Cao Y, Tille JC, Pepper
MS, Jackson DG, Fox SB, et al: First international consensus on the
methodology of lymphangiogenesis quantification in solid human
tumours. Br J Cancer. 95:1611–1625. 2006.PubMed/NCBI
|
5.
|
Sundar SS and Ganesan TS: Role of
lymphangiogenesis in cancer. J Clin Oncol. 25:4298–4307. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6.
|
Gilkes DM and Semenza GL: Role of
hypoxia-inducible factors in breast cancer metastasis. Future
Oncol. 9:1623–1636. 2013. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Mimeault M and Batra SK: Hypoxia-inducing
factors as master regulators of stemness properties and altered
metabolism of cancer- and metastasis-initiating cells. J Cell Mol
Med. 17:30–54. 2013. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Schoppmann SF, Birner P, Studer P and
Breiteneder-Geleff S: Lymphatic microvessel density and
lymphovascular invasion assessed by anti-podoplanin immunostaining
in human breast cancer. Anticancer Res. 21:2351–2355.
2001.PubMed/NCBI
|
9.
|
Beasley NJ, Prevo R, Banerji S, Leek RD,
Moore J, van Trappen P, et al: Intratumoral lymphangiogenesis and
lymph node metastasis in head and neck cancer. Cancer Res.
62:1315–1320. 2002.PubMed/NCBI
|
10.
|
Lohela M, Bry M, Tammela T and Alitalo K:
VEGFs and receptors involved in angiogenesis versus
lymphangiogenesis. Curr Opin Cell Biol. 21:154–165. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11.
|
Raica M and Ribatti D: Targeting tumor
lymphangiogenesis: an update. Curr Med Chem. 17:698–708. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12.
|
Mandriota SJ, Jussila L, Jeltsch M,
Compagni A, Baetens D, Prevo R, et al: Vascular endothelial growth
factor-C-mediated lymphangiogenesis promotes tumour metastasis.
EMBO J. 20:672–682. 2001. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Krishnan J, Kirkin V, Steffen A, Hegen M,
Weih D, Tomarev S, et al: Differential in vivo and in vitro
expression of vascular endothelial growth factor (VEGF)-C and
VEGF-D in tumors and its relationship to lymphatic metastasis in
immunocompetent rats. Cancer Res. 63:713–722. 2003.PubMed/NCBI
|
14.
|
Straume O, Jackson DG and Akslen LA:
Independent prognostic impact of lymphatic vessel density and
presence of low grade lymphangiogenesis in cutaneous melanoma. Clin
Cancer Res. 9:250–256. 2003.PubMed/NCBI
|
15.
|
Mattila MM, Ruohola JK, Karpanen T,
Jackson DG, Alitalo K and Härkönen PL: VEGF-C induced
lymphangiogenesis is associatedwith lymph node metastasis in
orthotopic MCF-7 tumors. Int J Cancer. 98:946–951. 2002. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Baldwin ME, Stacker SA and Achen MG:
Molecular control of lymphangiogenesis. Bioessays. 24:1030–1040.
2002. View Article : Google Scholar
|
17.
|
Tammela T, Zarkada G, Wallgard E,
Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M,
Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen
P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann
A, Betsholtz C and Alitalo K: Blocking VEGFR-3 suppresses
angiogenic sprouting and vascular network formation. Nature.
454:656–660. 2008. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Ferrara N, Gerber HP and LeCouter J: The
biology of VEGF and its receptors. Nat Med. 9:669–676. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19.
|
Hirakawa S, Kodama S, Kunstfeld R, Kajiya
K, Brown LF and Detmar M: VEGF-A induces tumor and sentinel lymph
node lymphangiogenesis and promotes lymphatic metastasis. J Exp
Med. 201:1089–1099. 2005. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li
Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD and Rich JN: Stem
cell-like glioma cells promote tumor angiogenesis through
vascularendothelial growth factor. Cancer Res. 66:7843–7848. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21.
|
Pellegatta S, Poliani PL, Corno D, Menghi
F, Ghielmetti F, Suarez-merino B, Caldera V, Nava S, Ravanini M,
Facchetti F, et al: Neurospheres enriched in cancer stem-like cells
are highly effective in eliciting a dendritic cell-mediated immune
response against malignant gliomas. Cancer Res. 66:10247–10252.
2006. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Yao XH, Ping YF, Chen JH, Xu CP, Chen DL,
Zhang R, Wang JM and Bian XW: Glioblastoma stem cells produce
vascular endothelial growth factor by activation of a G-protein
coupled formylpeptide receptor FPR. J Pathol. 215:369–376. 2008.
View Article : Google Scholar : PubMed/NCBI
|
23.
|
Folkins C, Shked Y, Man S, Tang T, Lee CR,
Zhu ZP, Hoffman RM and Kerbel RS: Glioma tumor stem-like cells
promote tumor angiogenesis and vasculogenesis via vascular
endothelial growth factor and stromal-derived factor 1. Cancer Res.
69:7243–7251. 2009. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Yang XR, Xu Y, Yu B, Zhou J, Qiu SJ, Shi
GM, Zhang BH, Wu WZ, Shi YH, Wu B, et al: High expression levels of
putative hepatic stem/progenitor cell biomarkers related to tumour
angiogenesis and poor prognosis of hepatocellular carcinoma. Gut.
59:953–962. 2010. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Shao ES, Lin L, Yao Y and Bostrom KI:
Expression of vascular endothelial growth factor is coordinately
regulated by the activin-like kinase receptors 1 and 5 in
endothelial cells. Blood. 114:2197–2206. 2009. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Piccirillo SG, Reynolds BA, Zanetti N,
Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F and Vescovi
AL: Bone morphogenetic proteins inhibit the tumorigenic potential
of human brain tumour-initiating cells. Nature. 444:761–765. 2006.
View Article : Google Scholar : PubMed/NCBI
|
27.
|
Hovinga KE, Shimizu F, Wang R,
Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Sofia Correia
A, Soulet D, Major T, Menon J, et al: Inhibition of notch signaling
in glioblastoma targets cancer stem cells via an endothelial cell
intermediate. Stem Cells. 28:1019–1029. 2010. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Alitalo K, Tammela T and Petrova TV:
Lymphangiogenesis in development and human disease. Nature.
438:946–953. 2005. View Article : Google Scholar : PubMed/NCBI
|
29.
|
He Y, Rajantie I, Ilmonen M, Makinen T,
Karkkainen MJ, Haiko P, et al: Preexisting lymphatic endothelium
but not endothelial progenitor cells are essential for tumor
lymphangiogenesis and lymphatic metastasis. Cancer Res.
64:3737–3740. 2004. View Article : Google Scholar : PubMed/NCBI
|
30.
|
He Y, Rajantie I, Pajusola K, Jeltsch M,
Holopainen T, Yla-Herttuala S, et al: Vascular endothelial cell
growth factor receptor 3-mediated activation of lymphatic
endothelium is crucial for tumor cell entry and spread via
lymphatic vessels. Cancer Res. 65:4739–4746. 2005. View Article : Google Scholar : PubMed/NCBI
|
31.
|
De Palma M, Venneri MA, Galli R, Sergi
Sergi L, Politi LS, Sampaolesi M, et al: Tie2 identifies a
hematopoietic lineage of proangiogenic monocytes required for tumor
vessel formation and a mesenchymal population of pericyte
progenitors. Cancer Cell. 8:211–226. 2005.PubMed/NCBI
|
32.
|
Lyden D, Hattori K, Dias S, Costa C,
Blaikie P, Butros L, et al: Impaired recruitment of
bone-marrow-derived endothelial and hematopoietic precursor cells
blocks tumor angiogenesis and growth. Nat Med. 7:1194–1201. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33.
|
Grunewald M, Avraham I, Dor Y,
Bachar-Lustig E, Itin A, Jung S, et al: VEGF-induced adult
neovascularization: recruitment, retention, and role of accessory
cells. Cell. 124:175–189. 2006. View Article : Google Scholar : PubMed/NCBI
|
34.
|
De Palma M, Venneri MA, Roca C and Naldini
L: Targeting exogenous genes to tumor angiogenesis by
transplantation of genetically modified hematopoietic stem cells.
Nat Med. 9:789–795. 2003.PubMed/NCBI
|
35.
|
Maruyama K, Ii M, Cursiefen C, Jackson DG,
Keino H, Tomita M, et al: Inflammation induced lymphangiogenesis in
the cornea arises from CD11b-positive macrophages. J Clin Invest.
115:2363–2372. 2005. View
Article : Google Scholar : PubMed/NCBI
|
36.
|
Schoppmann SF, Birner P, Stöckl J, Kalt R,
Ullrich R, Caucig C, et al: Tumor-associated macrophages express
lymphatic endothelial growth factors and are related to peritumoral
lymphangiogenesis. Am J Pathol. 161:947–956. 2002. View Article : Google Scholar
|
37.
|
Karnoub AE, Dash AB, Vo AP, Sullivan A,
Brooks MW, Bell GW, et al: Mesenchymal stem cells within tumour
stroma promote breast cancer metastasis. Nature. 449:557–563. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38.
|
Bagley RG, Weber W, Rouleau C, Yao M,
Honma N, Kataoka S, et al: Human mesenchymal stem cells from bone
marrow express tumor endothelial and stromal markers. Int J Oncol.
34:619–627. 2009. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Roobrouck VD, Clavel C, Jacobs SA,
Ulloa-Montoya F, Crippa S, Sohni A, et al: Differentiation
potential of human postnatal mesenchymal stem cells,
mesoangioblasts, andmultipotent adult progenitor cells reflected in
their transcriptome and partially influenced by the culture
conditions. Stem Cells. 29:871–882. 2011. View Article : Google Scholar
|
40.
|
Medici D, Shore EM, Lounev VY, Kaplan FS,
Kalluri R and Olsen BR: Conversion of vascular endothelial cells
into multi-potent stem-like cells. Nat Med. 16:1400–1406. 2010.
View Article : Google Scholar : PubMed/NCBI
|
41.
|
François M, Caprini A, Hosking B, Orsenigo
F, Wilhelm D, Browne C, et al: Sox18 induces development of the
lymphatic vasculature in mice. Nature. 456:643–647. 2008.PubMed/NCBI
|
42.
|
Wigle JT and Oliver G: Prox1 function is
required for the development of the murine lymphatic system. Cell.
98:769–778. 1999. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Srinivasan RS, Geng X, Yang Y, Wang Y,
Mukatira S, Studer M, et al: The nuclear hormone receptor Coup-TFII
is required for the initiation and early maintenance of Prox1
expression in lymphatic endothelial cells. Genes Dev. 24:696–707.
2010. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Paavonen K, Puolakkainen P, Jussila L,
Jahkola T and Alitalo K: Vascular endothelial growth factor
receptor-3 in lymphangiogenesis in wound healing. Am J Pathol.
156:1499–1504. 2000. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Valtola R, Salven P, Heikkilä P, Taipale
J, Joensuu H, Rehn M, et al: VEGFR-3 and its ligand VEGF-C are
associated with angiogenesis in breast cancer. Am J Pathol.
154:1381–1390. 1999. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Song EW: Research progress of solid tumor
stem cells. J SUN Yat-sen Univ. 31:172–178. 2010.
|
47.
|
Pandit TS, Kennette W, Mackenzie L, Zhang
G, Al-Katib W, Andrews J, et al: Lymphatic metastasis of breast
cancer cells is associated with differential gene expression
profiles that predict cancer stem cell-like properties and the
ability to survive, establish and grow in a foreign environment.
Int J Oncol. 35:297–308. 2009.
|
48.
|
Wakamatsu Y, Sakamoto N, Oo HZ, Naito Y,
Uraoka N, Anami K, et al: Expression of cancer stem cell markers
ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of
gastric cancer. Pathol Int. 62:112–119. 2012. View Article : Google Scholar : PubMed/NCBI
|
49.
|
Li G, Liu C, Yuan J, Xiao X, Tang N, Hao
J, et al: CD133(+) single cell-derived progenies of colorectal
cancer cell line SW480 with different invasive and metastatic
potential. Clin Exp Metastasis. 27:517–527. 2010.
|
50.
|
Brabletz T, Jung A, Spaderna S, Hlubek F
and Kirchner T: Opinion: migrating cancer stem cells-an integrated
concept of malignant tumour progression. Nat Rev Cancer. 5:744–749.
2005. View Article : Google Scholar : PubMed/NCBI
|
51.
|
Morel AP, Lièvre M, Thomas C, Hinkal G,
Ansieau S and Puisieux A: Generation of breast cancer stem cells
through epithelial-mesenchymal transition. PLoS One. 3:e28882008.
View Article : Google Scholar : PubMed/NCBI
|
52.
|
Asiedu MK, Ingle JN, Behrens MD, Radisky
DC and Knutson KL: TGFbeta/TNF(alpha)-mediated
epithelial-mesenchymal transition generates breast cancer stem
cells with a claudin-low phenotype. Cancer Res. 71:4707–4719. 2011.
View Article : Google Scholar : PubMed/NCBI
|
53.
|
Fidler IJ: The pathogenesis of cancer
metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev
Cancer. 3:453–458. 2003.
|
54.
|
Fidler IJ: Cancer metastasis. Br Med Bull.
47:157–177. 1991.
|
55.
|
Shen R, Ye Y, Chen L, Yan Q, Barsky SH and
Gao JX: Precancerous stem cells can serve as tumor vasculogenic
progenitors. PLoS One. 3:e16522008. View Article : Google Scholar : PubMed/NCBI
|
56.
|
Bussolati B, Grange C, Sapino A and
Camussi G: Endothelial cell differentiation of human breast tumor
stem/progenitor cells. J Cell Mol Med. 13:309–319. 2009. View Article : Google Scholar : PubMed/NCBI
|
57.
|
Sie M, den Dunnen WF, Hoving EW and de
Bont ES: Anti-angiogenic therapy in pediatric brain tumors: an
effective strategy? Crit Rev Oncol Hematol. 2013.10:pii:
S1040-8428(13)00210-2. View Article : Google Scholar
|
58.
|
Fujimoto J: Novel strategy of
anti-angiogenic therapy for uterine cervical carcinomas. Anticancer
Res. 29:2665–2669. 2009.PubMed/NCBI
|