Paracrine effects of stem cells in wound healing and cancer progression (Review)
- Authors:
- Jürgen Dittmer
- Benjamin Leyh
-
Affiliations: Clinic for Gynecology, University of Halle, Halle/Saale, Germany - Published online on: April 11, 2014 https://doi.org/10.3892/ijo.2014.2385
- Pages: 1789-1798
-
Copyright: © Dittmer et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Fuchs E and Chen T: A matter of life and death: self-renewal in stem cells. EMBO Rep. 14:39–48. 2013. View Article : Google Scholar | |
Hsu YC and Fuchs E: A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol. 13:103–114. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chun Q and Liang LS: Stem cell research, repairing, and regeneration medicine. Int J Low Extrem Wounds. 11:180–183. 2012. View Article : Google Scholar | |
Fuchs Y, Brown S, Gorenc T, Rodriguez J, Fuchs E and Steller H: Sept4/ARTS regulates stem cell apoptosis and skin regeneration. Science. 341:286–289. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crisostomo PR, Wang M, Markel TA, Lahm T, Abarbanell AM, Herrmann JL and Meldrum DR: Stem cell mechanisms and paracrine effects: potential in cardiac surgery. Shock. 28:375–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Friedenstein AJ, Piatetzky S II and Petrakova KV: Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 16:381–390. 1966.PubMed/NCBI | |
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P and Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 13:4279–4295. 2002. | |
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar | |
Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF and Keiliss-Borok IV: Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 17:331–340. 1974. View Article : Google Scholar : PubMed/NCBI | |
Brooke G, Cook M, Blair C, Han R, Heazlewood C, Jones B, Kambouris M, Kollar K, McTaggart S, Pelekanos R, Rice A, Rossetti T and Atkinson K: Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol. 18:846–858. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bluguermann C, Wu L, Petrigliano F, McAllister D, Miriuka S and Evseenko DA: Novel aspects of parenchymal-mesenchymal interactions: from cell types to molecules and beyond. Cell Biochem Funct. 31:271–280. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M and Chopp M: Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 32:1005–1011. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N and Phinney DG: Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA. 100:8407–8411. 2003. View Article : Google Scholar : PubMed/NCBI | |
Park KS, Jung KH, Kim SH, Kim KS, Choi MR, Kim Y and Chai YG: Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells. 25:2044–2052. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J and Brigham KL: Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 33:145–152. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baraniak PR and McDevitt TC: Stem cell paracrine actions and tissue regeneration. Regen Med. 5:121–143. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kassis I, Vaknin-Dembinsky A and Karussis D: Bone marrow mesenchymal stem cells: agents of immunomodulation and neuroprotection. Curr Stem Cell Res Ther. 6:63–68. 2011. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: The cancer stem cell: premises, promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gupta PB, Chaffer CL and Weinberg RA: Cancer stem cells: mirage or reality? Nat Med. 15:1010–1012. 2009. View Article : Google Scholar : PubMed/NCBI | |
Visvader JE and Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dittmer J and Rody A: Stem cells in breast cancer. Histol Histopathol. 28:827–838. 2013. | |
Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar | |
Kidd S, Spaeth E, Klopp A, Andreeff M, Hall B and Marini FC: The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy. 10:657–667. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C and Lander ES: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 146:633–644. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ren G, Chen X, Dong F, Li W, Ren X, Zhang Y and Shi Y: Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med. 1:51–58. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cuiffo BG and Karnoub AE: Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr. 6:220–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tetta C, Consiglio AL, Bruno S, Tetta E, Gatti E, Dobreva M, Cremonesi F and Camussi G: The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair? Muscles Ligaments Tendons J. 2:212–221. 2012.PubMed/NCBI | |
Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS and Donnenberg AD: Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie. 95:2235–2245. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paul G and Anisimov SV: The secretome of mesenchymal stem cells: Potential implications for neuroregeneration. Biochimie. 95:2246–2256. 2013. View Article : Google Scholar : PubMed/NCBI | |
Frenette PS, Pinho S, Lucas D and Scheiermann C: Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol. 31:285–316. 2013. View Article : Google Scholar : PubMed/NCBI | |
Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW and Yarmush ML: Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2:e9412007. View Article : Google Scholar : PubMed/NCBI | |
Agrawal GK, Jwa NS, Lebrun MH, Job D and Rakwal R: Plant secretome: unlocking secrets of the secreted proteins. Proteomics. 10:799–827. 2010. View Article : Google Scholar : PubMed/NCBI | |
Camussi G, Deregibus MC, Bruno S, Cantaluppi V and Biancone L: Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78:838–848. 2010. View Article : Google Scholar : PubMed/NCBI | |
Muralidharan-Chari V, Clancy JW, Sedgwick A and D'Souza-Schorey C: Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 123:1603–1611. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meckes DG Jr and Raab-Traub N: Microvesicles and viral infection. J Virol. 85:12844–12854. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, Hwang D, Kim KP and Kim DW: Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res. 11:839–849. 2012. View Article : Google Scholar : PubMed/NCBI | |
Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C and Camussi G: Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 5:e118032010. View Article : Google Scholar : PubMed/NCBI | |
Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB and Farber DB: Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 4:e47222009. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C and Camussi G: Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 20:1053–1067. 2009. View Article : Google Scholar | |
Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C and Camussi G: Microvesicles derived from human adult mesenchymal stem cells protect against ischaemiareperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant. 26:1474–1483. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P and Ratajczak MZ: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 20:847–856. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ardoin SP, Shanahan JC and Pisetsky DS: The role of microparticles in inflammation and thrombosis. Scand J Immunol. 66:159–165. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Gu H, Yu Q, Manukyan MC, Poynter JA and Wang M: Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PLoS One. 6:e292462011. | |
Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ and Penn MS: Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 362:697–703. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J, Guo Y, Bolli R and Rokosh G: Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation. 116:654–663. 2007. View Article : Google Scholar : PubMed/NCBI | |
Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J and Anversa P: Stem cells in the dog heart are self-renewing, clonogenic, and multi-potent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA. 102:8966–8971. 2005. View Article : Google Scholar | |
Nesselmann C, Ma N, Bieback K, Wagner W, Ho A, Konttinen YT, Zhang H, Hinescu ME and Steinhoff G: Mesenchymal stem cells and cardiac repair. J Cell Mol Med. 12:1795–1810. 2008. View Article : Google Scholar : PubMed/NCBI | |
Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ and Pratt RE: Mesenchymal stem cells over-expressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 14:840–850. 2006. View Article : Google Scholar | |
Uemura R, Xu M, Ahmad N and Ashraf M: Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 98:1414–1421. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Abarbanell AM, Herrmann JL, Weil BR, Manukyan MC, Poynter JA and Meldrum DR: TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS One. 5:e142062010. View Article : Google Scholar : PubMed/NCBI | |
Tang JM, Wang JN, Zhang L, Zheng F, Yang JY, Kong X, Guo LY, Chen L, Huang YZ, Wan Y and Chen SY: VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res. 91:402–411. 2011. View Article : Google Scholar : PubMed/NCBI | |
Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G and de Kleijn DP: Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 1:129–137. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A and Lim SK: Proteolytic potential of the MSC exosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics. 2012:9719072012.PubMed/NCBI | |
Xu M, Uemura R, Dai Y, Wang Y, Pasha Z and Ashraf M: In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol. 42:441–448. 2007. View Article : Google Scholar : PubMed/NCBI | |
Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G and de Kleijn DP: Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 6:206–214. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS and Dzau VJ: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20:661–669. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S and Epstein SE: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 109:1543–1549. 2004. View Article : Google Scholar : PubMed/NCBI | |
Estrada R, Li N, Sarojini H, An J, Lee MJ and Wang E: Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol. 219:563–571. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ohnishi S, Sumiyoshi H, Kitamura S and Nagaya N: Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 581:3961–3966. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Xu Z, Xu Y and Cui G: Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis. 16:245–255. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cho HJ, Lee N, Lee JY, Choi YJ, Ii M, Wecker A, Jeong JO, Curry C, Qin G and Yoon YS: Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med. 204:3257–3269. 2007. View Article : Google Scholar : PubMed/NCBI | |
Oshima H, Payne TR, Urish KL, Sakai T, Ling Y, Gharaibeh B, Tobita K, Keller BB, Cummins JH and Huard J: Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther. 12:1130–1141. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kupatt C, Bock-Marquette I and Boekstegers P: Embryonic endothelial progenitor cell-mediated cardioprotection requires thymosin beta4. Trends Cardiovasc Med. 18:205–210. 2008. View Article : Google Scholar : PubMed/NCBI | |
Payne TR, Oshima H, Okada M, Momoi N, Tobita K, Keller BB, Peng H and Huard J: A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol. 50:1677–1684. 2007. View Article : Google Scholar | |
Wu G, Rana JS, Wykrzykowska J, Du Z, Ke Q, Kang P, Li J and Laham RJ: Exercise-induced expression of VEGF and salvation of myocardium in the early stage of myocardial infarction. Am J Physiol Heart Circ Physiol. 296:H389–H395. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ambrosio F, Wolf SL, Delitto A, Fitzgerald GK, Badylak SF, Boninger ML and Russell AJ: The emerging relationship between regenerative medicine and physical therapeutics. Phys Ther. 90:1807–1814. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, Marban L and Marban E: Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol. 59:942–953. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H and Houser SR: Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res. 113:539–552. 2013. View Article : Google Scholar : PubMed/NCBI | |
Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM and Steinberg GK: Transplanted stem cell-secreted vascular endothelial growth factor effects post-stroke recovery, inflammation, and vascular repair. Stem Cells. 29:274–285. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP, Sheikh LA, McMillan EL, Schaar BT, Svendsen CN, Bliss TM and Steinberg GK: Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 134:1777–1789. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liauw J, Hoang S, Choi M, Eroglu C, Sun GH, Percy M, Wildman-Tobriner B, Bliss T, Guzman RG, Barres BA and Steinberg GK: Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab. 28:1722–1732. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Jones LL, Snyder EY and Tuszynski MH: Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 181:115–129. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, Brook G, Schoenen J and Franzen R: Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One. 8:e695152013. View Article : Google Scholar | |
Crigler L, Robey RC, Asawachaicharn A, Gaupp D and Phinney DG: Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 198:54–64. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sallustio F, Costantino V, Cox SN, Loverre A, Divella C, Rizzi M and Schena FP: Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. 83:392–403. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maeshima A, Zhang YQ, Furukawa M, Naruse T and Kojima I: Hepatocyte growth factor induces branching tubulogenesis in MDCK cells by modulating the activin-follistatin system. Kidney Int. 58:1511–1522. 2000. View Article : Google Scholar : PubMed/NCBI | |
Togel F, Weiss K, Yang Y, Hu Z, Zhang P and Westenfelder C: Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol. 292:F1626–1635. 2007. View Article : Google Scholar | |
Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L, Rottoli D, Valsecchi F, Benigni A, Wang J, Abbate M, Zoja C and Remuzzi G: Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol. 18:2921–2928. 2007. View Article : Google Scholar : PubMed/NCBI | |
Van Koppen A, Joles JA, van Balkom BW, Lim SK, de Kleijn D, Giles RH and Verhaar MC: Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS One. 7:e387462012.PubMed/NCBI | |
Mintz PJ, Huang KW, Reebye V, Nteliopoulos G, Lai HS, Saetrom P, Kasahara N, Jensen S, Pai M, Gordon MY, Marley SB, Behan R, Spalding DR, Haoudi A, Emara MM, Nicholls J, Rossi JJ and Habib NA: Exploiting human CD34 stem cell-conditioned medium for tissue repair. Mol Ther. 22:149–159. 2014.PubMed/NCBI | |
Hogaboam CM, Bone-Larson CL, Steinhauser ML, Lukacs NW, Colletti LM, Simpson KJ, Strieter RM and Kunkel SL: Novel CXCR2-dependent liver regenerative qualities of ELR-containing CXC chemokines. FASEB J. 13:1565–1574. 1999.PubMed/NCBI | |
Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, Sawaya R, Lang FF and Heimberger AB: Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 9:67–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Sawaya R, Lang FF and Heimberger AB: Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res. 16:461–473. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Wang HY, Miyahara Y, Peng G and Wang RF: Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res. 68:7228–7236. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kuklinski S, Pesheva P, Heimann C, Urschel S, Gloor S, Graeber S, Herzog V, Pietsch T, Wiestler OD and Probstmeier R: Expression pattern of galectin-3 in neural tumor cell lines. J Neurosci Res. 60:45–57. 2000. View Article : Google Scholar | |
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD and Rich JN: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66:7843–7848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Oka N, Soeda A, Inagaki A, Onodera M, Maruyama H, Hara A, Kunisada T, Mori H and Iwama T: VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem Biophys Res Commun. 360:553–559. 2007. View Article : Google Scholar : PubMed/NCBI | |
Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM and Kerbel RS: Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res. 69:7243–7551. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ping YF, Yao XH, Jiang JY, Zhao LT, Yu SC, Jiang T, Lin MC, Chen JH, Wang B, Zhang R, Cui YH, Qian C, Wang J and Bian XW: The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol. 224:344–354. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin G, Yang R, Banie L, Wang G, Ning H, Li LC, Lue TF and Lin CS: Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate. 70:1066–1173. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM and Lam PY: Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 31:146–155. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kong BH, Shin HD, Kim SH, Mok HS, Shim JK, Lee JH, Shin HJ, Huh YM, Kim EH, Park EK, Chang JH, Kim DS, Hong YK, Lee SJ and Kang SG: Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. Int J Oncol. 42:1754–1762. 2013. | |
Akimoto K, Kimura K, Nagano M, Takano S, To'a Salazar G, Yamashita T and Ohneda O: Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev. 22:1370–1386. 2013. View Article : Google Scholar | |
Bussolati B, Dekel B, Azzarone B and Camussi G: Human renal cancer stem cells. Cancer Lett. 338:141–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B and Camussi G: Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71:5346–5356. 2011. View Article : Google Scholar : PubMed/NCBI | |
Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP and Stassi G: Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 1:389–402. 2007. View Article : Google Scholar : PubMed/NCBI | |
Francipane MG, Alea MP, Lombardo Y, Todaro M, Medema JP and Stassi G: Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res. 68:4022–4025. 2008. View Article : Google Scholar : PubMed/NCBI | |
Conticello C, Pedini F, Zeuner A, Patti M, Zerilli M, Stassi G, Messina A, Peschle C and De Maria R: IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J Immunol. 172:5467–5477. 2004. View Article : Google Scholar : PubMed/NCBI | |
Todaro M, Zerilli M, Ricci-Vitiani L, Bini M, Perez Alea M, Maria Florena A, Miceli L, Condorelli G, Bonventre S, Di Gesu G, De Maria R and Stassi G: Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells. Cancer Res. 66:1491–1499. 2006. View Article : Google Scholar : PubMed/NCBI | |
Emmink BL, Verheem A, Van Houdt WJ, Steller EJ, Govaert KM, Pham TV, Piersma SR, Borel Rinkes IH, Jimenez CR and Kranenburg O: The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteomics. 2013.84–96. 2013. View Article : Google Scholar : PubMed/NCBI | |
Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, Chen Z and Zhu B: Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation. Stem Cells. 30:2309–2319. 2012.PubMed/NCBI | |
Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dittmer J, Oerlecke I and Leyh B: Involvement of mesenchymal stem cells in breast cancer progression. Breast Cancer-Focusing Tumor Microenvironment, Stem Cells and Metastasis. Gunduz M and Gunduz E: INTECH Open Access Publisher; Rijeka: pp. 247–272. 2011 | |
Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R and Wicha MS: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71:614–624. 2011. View Article : Google Scholar : PubMed/NCBI | |
Devarajan E, Song YH, Krishnappa S and Alt E: Epithelialmesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int J Cancer. 131:1023–1031. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS and Polyak K: Molecular definition of breast tumor heterogeneity. Cancer Cell. 11:259–273. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hardt O, Wild S, Oerlecke I, Hofmann K, Luo S, Wiencek Y, Kantelhardt E, Vess C, Smith GP, Schroth GP, Bosio A and Dittmer J: Highly sensitive profiling of CD44(+)/CD24(−) breast cancer stem cells by combining global mRNA amplification and next generation sequencing: Evidence for a hyperactive PI3K pathway. Cancer Lett. 325:165–174. 2012. | |
Harbeck N, Schmitt M, Meisner C, Friedel C, Untch M, Schmidt M, Sweep CG, Lisboa BW, Lux MP, Beck T, Hasmuller S, Kiechle M, Janicke F and Thomssen C: Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer. 49:1825–1835. 2013. | |
Dellas C and Loskutoff DJ: Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost. 93:631–640. 2005.PubMed/NCBI | |
Czekay RP, Wilkins-Port CE, Higgins SP, Freytag J, Overstreet JM, Klein RM, Higgins CE, Samarakoon R and Higgins PJ: PAI-1: An integrator of cell signaling and migration. Int J Cell Biol. 2011:5624812011. View Article : Google Scholar : PubMed/NCBI | |
Hogan NM, Joyce MR, Murphy JM, Barry FP, O'Brien T, Kerin MJ and Dwyer RM: Impact of mesenchymal stem cell secreted PAI-1 on colon cancer cell migration and proliferation. Biochem Biophys Res Commun. 435:574–579. 2013. View Article : Google Scholar : PubMed/NCBI | |
Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, Sotiropoulou PA, Loges S, Lapouge G, Candi A, Mascre G, Drogat B, Dekoninck S, Haigh JJ, Carmeliet P and Blanpain C: A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 478:399–403. 2011. View Article : Google Scholar : PubMed/NCBI | |
Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G and La Porta CA: Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 43:935–946. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maeda S, Shinchi H, Kurahara H, Mataki Y, Maemura K, Sato M, Natsugoe S, Aikou T and Takao S: CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer. 98:1389–1397. 2008. View Article : Google Scholar : PubMed/NCBI | |
Romagnani P and Anders HJ: What can tubular progenitor cultures teach us about kidney regeneration? Kidney Int. 83:351–353. 2013. View Article : Google Scholar : PubMed/NCBI | |
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A and Gilbertson RJ: A perivascular niche for brain tumor stem cells. Cancer Cell. 11:69–82. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eyler CE and Rich JN: Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, Chen EI, Lyden D and Bissell MJ: The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 15:807–617. 2013. View Article : Google Scholar : PubMed/NCBI | |
Descot A and Oskarsson T: The molecular composition of the metastatic niche. Exp Cell Res. 319:1679–1686. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA and Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 138:645–659. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bottos A and Bardelli A: Oncogenes and angiogenesis: a way to personalize anti-angiogenic therapy? Cell Mol Life Sci. 70:4131–4140. 2013. View Article : Google Scholar : PubMed/NCBI |