1.
|
Folkman J: Angiogenesis in cancer,
vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995.
View Article : Google Scholar : PubMed/NCBI
|
2.
|
Dewing D, Emmett M and Pritchard Jones R:
The roles of angiogenesis in malignant melanoma: trends in basic
science research over the last 100 years. ISRN Oncol.
2012:5469272012.PubMed/NCBI
|
3.
|
Folkman J: Role of angiogenesis in tumor
growth and metastasis. Semin Oncol. 29:15–18. 2002. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Zetter BR: Angiogenesis and tumor
metastasis. Annu Rev Med. 49:407–424. 1998. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Naumov GN, Bender E, Zurakowski D, et al:
A model of human tumor dormancy: an angiogenic switch from the
non-angiogenic phenotype. J Natl Cancer Inst. 98:316–325. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6.
|
Nanus DM, Schmitz-Dräger BJ, Motzer RJ, et
al: Expression of basic fibroblast growth factor in primary human
renal tumors: correlation with poor survival. J Natl Cancer Inst.
85:1597–1599. 1993. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Toi M, Hoshina S, Takayanagi T and
Tominaga T: Association of vascular endothelial growth factor
expression with tumor angiogenesis and with early relapse in
primary breast cancer. Jpn J Cancer Res. 85:1045–1048. 1994.
View Article : Google Scholar : PubMed/NCBI
|
8.
|
Relf M, LeJeune S, Scott PA, et al:
Expression of the angiogenic factors, vascular endothelial growth
factor, acidic and basic fibroblast growth factor, tumor growth
factor beta-1, platelet derived growth endothelial cell growth
factor, placental growth factor, and pleiotrophin in human primary
breast cancer and its relation to angiogenesis. Cancer Res.
57:963–969. 1997.
|
9.
|
Kandel J, Bossy-Wetzel E, Radvanyi F,
Klagsbrun M, Folkman J and Hanahan D: Neovascularization is
associated with a switch to the export of bFGF in the multistep
development of fibrosarcoma. Cell. 66:1095–1104. 1991. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Hanahan D and Folkman J: Patterns and
emerging mechanisms of the angiogenic switch during tumorigenesis.
Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Ferrara N: Vascular endothelial growth
factor. Eur J Cancer. 32A:2413–2422. 1996. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Risau W: Mechanisms of angiogenesis.
Nature. 386:671–674. 1997. View
Article : Google Scholar : PubMed/NCBI
|
13.
|
Shibuya M: Vascular endothelial growth
factor-dependent and independent regulation of angiogenesis. BMB
Rep. 41:278–286. 2008. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Benjamin LE and Keshet E: Conditional
switching of vascular endothelial growth factor (VEGF) expression
in tumors: induction of endothelial cell shedding and regression of
hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad
Sci USA. 94:8761–8766. 1997. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Shibuya M: Differential roles of vascular
endothelial growth factor receptor-1 and receptor-2 in
angiogenesis. J Biochem Mol Biol. 39:469–478. 2006. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Ellis LM and Hicklin DJ: VEGF-targeted
therapy: mechanisms of anti-tumour activity. Nat Rev Cancer.
8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Dvorak HF: Vascular permeability
factor/vascular endothelial growth factor: a critical cytokine in
tumor angiogenesis and a potential target for diagnosis and
therapy. J Clin Oncol. 20:4368–4380. 2002. View Article : Google Scholar
|
18.
|
Erhard H, Rietveld FJ, van Altena MC,
Bröcker EB, Ruiter DJ and de Waal RM: Transition of horizontal to
vertical growth phase melanoma is accompanied by induction of
vascular endothelial growth factor expression and angiogenesis.
Melanoma Res. 7(Suppl 2): S19–S26. 1997. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Bergers G and Hanahan D: Modes of
resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603.
2008. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Potente M, Gerhardt H and Carmeliet P:
Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887.
2011. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Cunningham KG, Hutchinson SA, Manson W and
Spring FS: Cordycepin, a metabolic product from cultures of C.
militaris (Linn.) Link Part I Isolation and characterisation. J
Chem Soc. 508:2299–3200. 1951. View Article : Google Scholar
|
22.
|
Song CH, Jeon YJ, Yang BK, Ra KS and Sung
JM: Anti-complementary activity of exo-polymers produced from
submerged mycelial cultures of higher fungi with particular
reference to Cordyceps militaris. J Microbiol Biotechnol.
8:536–539. 1998.
|
23.
|
Mizuno T: Medicinal effects and
utilization of Cordyceps (Fr.) Link (Ascomycetes) and Isaria Fr
(Mitosporic Fungi) Chinese caterpillar fungi, ‘Tochukaso’ (Review).
Int J Med Mushroom. 1:251–261. 1999.
|
24.
|
Nag TB and Wang HX: Pharmacological
actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol.
57:1509–1519. 2005. View Article : Google Scholar
|
25.
|
Das SK, Masuda M, Hatashita M, Sakurai A
and Sakakibara M: A new approach for improving cordycepin
productivity in surface liquid culture of C. militaris using
high-energy ion beam irradiation. Lett Appl Microbiol. 47:534–538.
2008. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Das SK, Masuda M, Sakurai A and Sakakibara
M: Medicinal uses of the mushroom Cordyceps militaris:
current state and prospects. Fitoterapia. 8:961–968.
2010.PubMed/NCBI
|
27.
|
Sakaguchi M, Huh N and Namba M: A novel
tumor suppressor, REIC/Dkk-3 gene identified by our in vitro
transformation model of normal human fibroblasts works as a potent
therapeutic antitumor agent. Adv Exp Med Biol. 720:209–215. 2012.
View Article : Google Scholar
|
28.
|
Das SK, Masuda M, Hatashita M, Sakurai A
and Sakakibara M: Optimization of culture medium for cordycepin
production using C. militaris mutant obtained by ion beam
irradiation. Proc Biochem. 45:129–132. 2010. View Article : Google Scholar
|
29.
|
Graupera M and Potente M: Regulation of
angiogenesis by PI3K signaling networks. Exp Cell Res.
319:1348–1355. 2013. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Graupera M, Guillermet-Guibert J, Foukas
LC, et al: Angiogenesis selectively requires the p110 alpha isoform
of PI3K to control endothelial cell migration. Nature. 453:662–666.
2008. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Wang F, Yamauchi M, Muramatsu M, Osawa T,
Tsuchid R and Shibuya M: MRACK1 regulates VEGF/Flt1-mediated cell
migration via activation of a PI3K/Akt pathway. J Biol Chem.
286:9097–9106. 2011. View Article : Google Scholar
|
32.
|
Zhao P, Meng Q, Liu LZ, You YP, Liu N and
Jiang BH: Regulation of survivin by PI3K/Akt/p70S6K1 pathway.
Biochem Biophys Res Commun. 395:219–224. 2010. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Maity A, Pore N, Lee J, Solomon D and
O’Rourke DM: Epidermal growth factor receptor transcriptionally
up-regulates vascular endothelial growth factor expression in human
glioblastoma cells via a pathway involving phosphatidylinositol
3-kinase and distinct from that induced by hypoxia. Cancer Res.
60:5879–5886. 2000.
|
34.
|
Zhong H, Chiles K, Feldse D, et al:
Modulation of hypoxia-inducible factor 1alpha expression by the
epidermal growth factor/phosphatidylinositol3-kinase/PTEN/AKT/FRAP
pathway in human prostate cancer cells: implications for tumor
angiogenesis and therapeutics. Cancer Res. 60:1541–1545. 2000.
|
35.
|
Karar J and Maity A: PI3K/AKT/mTOR pathway
in angiogenesis. Front Mol Neurosci. 4:512011. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Grimes CA and Jope RS: The multifaceted
roles of glycogen synthase kinase 3β in cellular signaling. Prog
Neurobiol. 65:391–426. 2001.
|
37.
|
Forde JE and Dale TC: Glycogen synthase
kinase 3: a key regulator of cellular fate. Cell Mol Life Sci.
64:1930–1944. 2007. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Rayasam GV, Tulasi VK, Sodhi R, Davis JA
and Ray A: Glycogen synthase kinase 3: more than a namesake. Br J
Pharmacol. 156:885–898. 2009. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Tekle C, Giovannetti E, Sigmond J, Graff
JR, Smid K and Peters GJ: Molecular pathways involved in the
synergistic interaction of the PKCβ inhibitor enzastaurin with the
antifolate pemetrexed in non-small cell lung cancer cells. Br J
Cancer. 99:750–759. 2008.
|
40.
|
Graff JR, McNulty AM, Hanna KR, et al: The
protein kinase Cbeta-selective inhibitor, Enzastaurin
(LY317615.HCl), suppresses signaling through the AKT pathway,
induces apoptosis, and suppresses growth of human colon cancer and
glioblastoma xenografts. Cancer Res. 65:7462–7469. 2005. View Article : Google Scholar
|
41.
|
Hanauske AR, Oberschmidt O, Hanauske-Abel
H, Lahn MM and Eismann U: Antitumor activity of enzastaurin
(LY317615.HCl) against human cancer cell lines and freshly
explanted tumors investigated in in-vitro (corrected) soft-agar
cloning experiments. Invest New Drugs. 25:205–210. 2007. View Article : Google Scholar
|
42.
|
Lee KW, Kim SG, Kim HP, et al:
Enzastaurin, a protein kinase C beta inhibitor, suppresses
signaling through the ribosomal S6 kinase and bad pathways and
induces apoptosis in human gastric cancer cells. Cancer Res.
68:1916–1926. 2008. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Manning BD and Cantley LC: AKT/PKB
signaling: navigating downstream. Cell. 129:1261–1274. 2007.
View Article : Google Scholar : PubMed/NCBI
|
44.
|
Kandel ES and Hay N: The regulation and
activities of the multi-functional serine/threonine kinase Akt/PKB.
Exp Cell Res. 253:210–229. 1999. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Chen J, Somanath PR, Razorenova OV, Chen
WS, Hay N, Bornstein P and Byzova TV: Akt1 regulates pathological
angiogenesis, vascular maturation and permeability in vivo. Nature
Med. 11:1188–1196. 2005. View
Article : Google Scholar : PubMed/NCBI
|
46.
|
Somanath PR, Razorenova OV, Chen J and
Byzova TV: Akt1 in Endothelial cell and angiogenesis. Cell Cycle.
5:512–518. 2006. View Article : Google Scholar : PubMed/NCBI
|
47.
|
Ruoslahti E and Engvall E: Integrins and
vascular extracellular matrix assembly. J Clin Invest.
99:1149–1152. 1997. View Article : Google Scholar : PubMed/NCBI
|
48.
|
Carmeliet P, Moons L, Luttun A, et al:
Synergism between vascular endothelial growth factor and placental
growth factor contributes to angiogenesis and plasma extravasation
in pathological conditions. Nat Med. 7:575–583. 2001. View Article : Google Scholar
|
49.
|
Luangdilok S, Box C, Harrington K,
Rhys-Evans P and Eccles S: MAPK and PI3K signalling differentially
regulate angiogenic and lymphangiogenic cytokine secretion in
squamous cellcarcinoma of the head and neck. Eur J Cancer.
47:520–529. 2011. View Article : Google Scholar : PubMed/NCBI
|
50.
|
Kyriakis JM and Avruch J: Sounding the
alarm: Protein kinase cascades activated by stress and
inflammation. J Biol Chem. 271:24313–24316. 1996. View Article : Google Scholar : PubMed/NCBI
|
51.
|
Conrad PW, Rust RT, Han J, Millhorn DE and
Beitner-Johnson D: Selective activation of p38alpha and p38gamma by
hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells.
J Biol Chem. 274:23570–23576. 1999. View Article : Google Scholar : PubMed/NCBI
|
52.
|
Lai WC, Zhou M, Shankavaram U, Peng G and
Wahl LM: Differential regulation of lipopolysaccharide induced
monocyte matrix metalloproteinase (MMP)-1 and MMP-9 by p38 and
extracellular signal-regulated kinase 1/2 mitogen-activated protein
kinases. J Immunol. 170:6244–6249. 2003. View Article : Google Scholar
|
53.
|
Xia Z, Dickens M, Raingeaud J, Davis RJ
and Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases
on apoptosis. Science. 270:1326–1331. 1995. View Article : Google Scholar : PubMed/NCBI
|
54.
|
De S, Razorenova O, McCabe NP, O’Toole T,
Qin J and Byzova TV: VEGF-integrin interplay controls tumor growth
and vascularization. Proc Natl Acad Sci USA. 102:7589–7594. 2005.
View Article : Google Scholar : PubMed/NCBI
|
55.
|
Franco CA, Liebner S and Gerhardt H:
Vascular morphogenesis: a Wnt for every vessel? Curr Opin Genet
Dev. 19:476–483. 2009. View Article : Google Scholar : PubMed/NCBI
|
56.
|
Fischer C, Mazzone M, Jonckx B and
Carmeliet P: FLT1 and its ligands VEGFB and PlGF: drug targets for
anti-angiogenic therapy? Nature Rev Cancer. 8:942–956. 2008.
View Article : Google Scholar : PubMed/NCBI
|