Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer (Review)
- Authors:
- L. Magadoux
- N. Isambert
- S. Plenchette
- J. F. Jeannin
- V. Laurens
-
Affiliations: EA 7269 Ecole Pratique des Hautes Etudes-University of Burgundy-INSERM U866, Dijon 21079, France - Published online on: June 24, 2014 https://doi.org/10.3892/ijo.2014.2517
- Pages: 919-928
This article is mentioned in:
Abstract
Feldman BJ and Feldman D: The development of androgen-independent prostate cancer. Nat Rev Cancer. 1:34–45. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yap TA, Zivi A, Omlin A and de Bono JS: The changing therapeutic landscape of castration-resistant prostate cancer. Nat Rev Clin Oncol. 8:597–610. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eisenberger MA and Walsh PC: Early androgen deprivation for prostate cancer? N Engl J Med. 341:1837–1838. 1999. View Article : Google Scholar : PubMed/NCBI | |
Visakorpi T, Hyytinen E, Koivisto P, et al: In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 9:401–406. 1995. View Article : Google Scholar | |
Taplin ME, Bubley GJ, Shuster TD, et al: Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 332:1393–1398. 1995. View Article : Google Scholar : PubMed/NCBI | |
Taplin ME, Bubley GJ, Ko YJ, et al: Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59:2511–2515. 1999.PubMed/NCBI | |
Yamaoka M, Hara T and Kusaka M: Overcoming persistent dependency on androgen signaling after progression to castration-resistant prostate cancer. Clin Cancer Res. 16:4319–4324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Araki S, Omori Y, Lyn D, et al: Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67:6854–6862. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Josson S, Fang F, et al: RelB enhances prostate cancer growth: implications for the role of the nuclear factor-κB alternative pathway in tumorigenicity. Cancer Res. 69:3267–3271. 2009.PubMed/NCBI | |
Tannock IF, de Wit R, Berry WR, et al: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 351:1502–1512. 2004. View Article : Google Scholar : PubMed/NCBI | |
Serpa Neto A, Tobias-Machado M, Kaliks R, Wroclawski ML, Pompeo AC and Del Giglio A: Ten years of docetaxel-based therapies in prostate adenocarcinoma: a systematic review and meta-analysis of 2244 patients in 12 randomized clinical trials. Clin Genitourin Cancer. 9:115–123. 2011.PubMed/NCBI | |
Marech I, Vacca A, Ranieri G, Gnoni A and Dammacco F: Novel strategies in the treatment of castration-resistant prostate cancer (Review). Int J Oncol. 40:1313–1320. 2012.PubMed/NCBI | |
Seruga B and Tannock IF: Chemotherapy-based treatment for castration-resistant prostate cancer. J Clin Oncol. 29:3686–3694. 2011. View Article : Google Scholar : PubMed/NCBI | |
El-Amm J and Aragon-Ching JB: The changing landscape in the treatment of metastatic castration-resistant prostate cancer. Ther Adv Med Oncol. 5:25–40. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shelanski ML, Gaskin F and Cantor CR: Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA. 70:765–768. 1973. View Article : Google Scholar : PubMed/NCBI | |
McGrogan BT, Gilmartin B, Carney DN and McCann A: Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta. 1785:96–132. 2008.PubMed/NCBI | |
Zhu J, Beattie EC, Yang Y, Wang HJ, Seo JY and Yang LX: Centrosome impairments and consequent cytokinesis defects are possible mechanisms of taxane drugs. Anticancer Res. 25:1919–1925. 2005.PubMed/NCBI | |
Fabbri F, Amadori D, Carloni S, et al: Mitotic catastrophe and apoptosis induced by docetaxel in hormone-refractory prostate cancer cells. J Cell Physiol. 217:494–501. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kramer G, Schwarz S, Hägg M, Havelka AM and Linder S: Docetaxel induces apoptosis in hormone refractory prostate carcinomas during multiple treatment cycles. Br J Cancer. 94:1592–1598. 2006. | |
Mediavilla-Varela M, Pacheco FJ, Almaguel F, et al: Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer. 8:682009. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Chung JY, Lee SG, et al: Nuclear interaction of Smac/DIABLO with Survivin at G2/M arrest prompts docetaxel-induced apoptosis in DU145 prostate cancer cells. Biochem Biophys Res Commun. 350:949–954. 2006. View Article : Google Scholar | |
Kuroda K, Liu H, Kim S, Guo M, Navarro V and Bander NH: Docetaxel down-regulates the expression of androgen receptor and prostate-specific antigen but not prostate-specific membrane antigen in prostate cancer cell lines: implications for PSA surrogacy. Prostate. 69:1579–1585. 2009. View Article : Google Scholar | |
Seruga B, Ocana A and Tannock IF: Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol. 8:12–23. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sissung TM, Baum CE, Deeken J, et al: ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res. 14:4543–4549. 2008. View Article : Google Scholar | |
O’Neill AJ, Prencipe M, Dowling C, et al: Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol Cancer. 10:1262011.PubMed/NCBI | |
Xie Y, Xu K, Linn DE, et al: The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem. 283:3349–3356. 2008. View Article : Google Scholar : PubMed/NCBI | |
Terry S, Ploussard G, Allory Y, et al: Increased expression of class III β-tubulin in castration-resistant human prostate cancer. Br J Cancer. 101:951–956. 2009. | |
Ploussard G, Terry S, Maille P, et al: Class III β-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res. 70:9253–9264. 2010. | |
Hara T, Ushio K, Nishiwaki M, et al: A mutation in β-tubulin and a sustained dependence on androgen receptor signalling in a newly established docetaxel-resistant prostate cancer cell line. Cell Biol Int. 34:177–184. 2010. | |
Heidenberg HB, Bauer JJ, McLeod DG, Moul JW and Srivastava S: The role of the p53 tumor suppressor gene in prostate cancer: a possible biomarker? Urology. 48:971–979. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gan L, Wang J, Xu H and Yang X: Resistance to docetaxel-induced apoptosis in prostate cancer cells by p38/p53/p21 signaling. Prostate. 71:1158–1166. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshino T, Shiina H, Urakami S, et al: Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res. 12:6116–6124. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lebedeva I, Rando R, Ojwang J, Cossum P and Stein CA: Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res. 60:6052–6060. 2000.PubMed/NCBI | |
Tantivejkul K, Loberg RD, Mawocha SC, et al: PAR1-mediated NF-κB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism. J Cell Biochem. 96:641–652. 2005.PubMed/NCBI | |
Patterson SG, Wei S, Chen X, et al: Novel role of Stat1 in the development of docetaxel resistance in prostate tumor cells. Oncogene. 25:6113–6122. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zemskova M, Sahakian E, Bashkirova S and Lilly M: The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells. J Biol Chem. 283:20635–20644. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S and Konishi N: Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4-hydroxyphenyl)retinamide-induced apoptosis in prostate cancer cells. Mol Carcinog. 35:127–137. 2002. View Article : Google Scholar : PubMed/NCBI | |
Palayoor ST, Youmell MY, Calderwood SK, Coleman CN and Price BD: Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene. 18:7389–7394. 1999. | |
Domingo-Domenech J, Oliva C, Rovira A, et al: Interleukin 6, a nuclear factor-κB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-κB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res. 12:5578–5586. 2006. | |
Zerbini LF, Wang Y, Cho JY and Libermann TA: Constitutive activation of nuclear factor κB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res. 63:2206–2215. 2003. | |
Michalaki V, Syrigos K, Charles P and Waxman J: Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 90:2312–2316. 2004. | |
Singh RK and Lokeshwar BL: Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Mol Cancer. 8:572009. View Article : Google Scholar | |
Inoue K, Slaton JW, Eve BY, et al: Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res. 6:2104–2119. 2000.PubMed/NCBI | |
Lu Y, Cai Z, Galson DL, et al: Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate. 66:1311–1318. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shirotake S, Miyajima A, Kosaka T, et al: Regulation of monocyte chemoattractant protein-1 through angiotensin II type 1 receptor in prostate cancer. Am J Pathol. 180:1008–1016. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qian DZ, Rademacher BL, Pittsenbarger J, et al: CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate. 70:433–442. 2010. | |
Roca H, Varsos ZS and Pienta KJ: CCL2 is a negative regulator of AMP-activated protein kinase to sustain mTOR complex-1 activation, survivin expression, and cell survival in human prostate cancer PC3 cells. Neoplasia. 11:1309–1317. 2009. | |
Loberg RD, Day LL, Harwood J, et al: CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia. 8:578–586. 2006. View Article : Google Scholar | |
Shiota M, Kashiwagi E, Yokomizo A, et al: Interaction between docetaxel resistance and castration resistance in prostate cancer: implications of Twist1, YB-1, and androgen receptor. Prostate. 73:1336–1344. 2013. View Article : Google Scholar | |
Marin-Aguilera M, Codony-Servat J, Kalko SG, et al: Identification of docetaxel resistance genes in castration-resistant prostate cancer. Mol Cancer Ther. 11:329–339. 2012. View Article : Google Scholar : PubMed/NCBI | |
Patrikainen L, Porvari K, Kurkela R, Hirvikoski P, Soini Y and Vihko P: Expression profiling of PC3 cell line variants and comparison of MIC-1 transcript levels in benign and malignant prostate. Eur J Clin Invest. 37:126–133. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karan D, Kelly DL, Rizzino A, Lin MF and Batra SK: Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis. 23:967–975. 2002. View Article : Google Scholar | |
Kelly JA, Lucia MS and Lambert JR: p53 controls prostate-derived factor/macrophage inhibitory cytokine/NSAID-activated gene expression in response to cell density, DNA damage and hypoxia through diverse mechanisms. Cancer Lett. 277:38–47. 2009. View Article : Google Scholar | |
Mimeault M and Batra SK: Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. J Cell Physiol. 224:626–635. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang CY, Beer TM, Higano CS, et al: Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin Cancer Res. 13:5825–5833. 2007.PubMed/NCBI | |
Zhao L, Lee BY, Brown DA, et al: Identification of candidate biomarkers of therapeutic response to docetaxel by proteomic profiling. Cancer Res. 69:7696–7703. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mimeault M, Johansson SL and Batra SK: Marked improvement of cytotoxic effects induced by docetaxel on highly metastatic and androgen-independent prostate cancer cells by downregulating macrophage inhibitory cytokine-1. Br J Cancer. 108:1079–1091. 2013. View Article : Google Scholar | |
Shiota M, Bishop JL, Nip KM, et al: Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res. 73:3109–3119. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhong B, Sallman DA, Gilvary DL, et al: Induction of clusterin by AKT - role in cytoprotection against docetaxel in prostate tumor cells. Mol Cancer Ther. 9:1831–1841. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R and Wang CY: Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol. 7:909–915. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pucci S, Bonanno E, Pichiorri F, Angeloni C and Spagnoli LG: Modulation of different clusterin isoforms in human colon tumorigenesis. Oncogene. 23:2298–2304. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shannan B, Seifert M, Leskov K, et al: Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ. 13:12–19. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sowery RD, Hadaschik BA, So AI, et al: Clusterin knockdown using the antisense oligonucleotide OGX-011 re-sensitizes docetaxel-refractory prostate cancer PC3 cells to chemotherapy. BJU Int. 102:389–397. 2008. View Article : Google Scholar | |
Springate CM, Jackson JK, Gleave ME and Burt HM: Efficacy of an intratumoral controlled release formulation of clusterin antisense oligonucleotide complexed with chitosan containing paclitaxel or docetaxel in prostate cancer xenograft models. Cancer Chemother Pharmacol. 56:239–247. 2005. View Article : Google Scholar | |
Shiota M, Zardan A, Takeuchi A, et al: Clusterin mediates TGF-β-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res. 72:5261–5272. 2012.PubMed/NCBI | |
Wu K, Xie D, Zou Y, et al: The mechanism of DAB2IP in chemoresistance of prostate cancer cells. Clin Cancer Res. 19:4740–4749. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heldin CH, Rubin K, Pietras K and Ostman A: High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer. 4:806–813. 2004. View Article : Google Scholar : PubMed/NCBI | |
Netti PA, Hamberg LM, Babich JW, et al: Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc Natl Acad Sci USA. 96:3137–3142. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tomic TT, Gustavsson H, Wang W, Jennbacken K, Welen K and Damber JE: Castration resistant prostate cancer is associated with increased blood vessel stabilization and elevated levels of VEGF and Ang-2. Prostate. 72:705–712. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gustavsson H, Welen K and Damber JE: Transition of an androgen-dependent human prostate cancer cell line into an androgen-independent subline is associated with increased angiogenesis. Prostate. 62:364–373. 2005. View Article : Google Scholar | |
Gustavsson H, Wang W, Jennbacken K, Welen K and Damber JE: ADAMTS1, a putative anti-angiogenic factor, is decreased in human prostate cancer. BJU Int. 104:1786–1790. 2009. View Article : Google Scholar | |
Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH and Augustin HG: Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60:1388–1393. 2000. | |
Netti PA, Baxter LT, Boucher Y, Skalak R and Jain RK: Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 55:5451–5458. 1995.PubMed/NCBI | |
Wilson C, Scullin P, Worthington J, et al: Dexamethasone potentiates the antiangiogenic activity of docetaxel in castration-resistant prostate cancer. Br J Cancer. 99:2054–2064. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sweeney CJ, Miller KD, Sissons SE, et al: The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res. 61:3369–3372. 2001. | |
Hotchkiss KA, Ashton AW, Mahmood R, Russell RG, Sparano JA and Schwartz EL: Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther. 1:1191–1200. 2002.PubMed/NCBI | |
Murtagh J, Lu H and Schwartz EL: Taxotere-induced inhibition of human endothelial cell migration is a result of heat shock protein 90 degradation. Cancer Res. 66:8192–8199. 2006. View Article : Google Scholar : PubMed/NCBI | |
Erten C, Karaca B, Kucukzeybek Y, et al: Regulation of growth factors in hormone- and drug-resistant prostate cancer cells by synergistic combination of docetaxel and octreotide. BJU Int. 104:107–114. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bok RA, Halabi S, Fei DT, et al: Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res. 61:2533–2536. 2001. | |
Tatum JL, Kelloff GJ, Gillies RJ, et al: Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol. 82:699–757. 2006. View Article : Google Scholar | |
Forde JC, Perry AS, Brennan K, et al: Docetaxel maintains its cytotoxic activity under hypoxic conditions in prostate cancer cells. Urol Oncol. 30:912–919. 2012. View Article : Google Scholar | |
Thews O, Gassner B, Kelleher DK, Schwerdt G and Gekle M: Impact of hypoxic and acidic extracellular conditions on cytotoxicity of chemotherapeutic drugs. Adv Exp Med Biol. 599:155–161. 2007. View Article : Google Scholar | |
Domanska UM, Timmer-Bosscha H, Nagengast WB, et al: CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia. 14:709–718. 2012.PubMed/NCBI | |
Sun YX, Wang J, Shelburne CE, et al: Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 89:462–473. 2003. View Article : Google Scholar : PubMed/NCBI | |
Engl T, Relja B, Marian D, et al: CXCR4 chemokine receptor mediates prostate tumor cell adhesion through α5 and β3 integrins. Neoplasia. 8:290–301. 2006. | |
Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y and Fuse H: Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci. 99:539–542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS and McCauley LK: Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62:1832–1837. 2002.PubMed/NCBI | |
Shiozawa Y, Pedersen EA, Havens AM, et al: Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 121:1298–1312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Desarnaud F, Geck P, Parkin C, Carpinito G and Makarovskiy AN: Gene expression profiling of the androgen independent prostate cancer cells demonstrates complex mechanisms mediating resistance to docetaxel. Cancer Biol Ther. 11:204–212. 2011. View Article : Google Scholar | |
Bjartell A, Montironi R, Berney DM and Egevad L: Tumour markers in prostate cancer II: diagnostic and prognostic cellular biomarkers. Acta Oncol. 50(Suppl 1): 76–84. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS and Redwine E: Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med. 317:909–916. 1987. View Article : Google Scholar : PubMed/NCBI | |
Catalona WJ, Smith DS, Ratliff TL, et al: Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 324:1156–1161. 1991. View Article : Google Scholar : PubMed/NCBI | |
Smith DC, Dunn RL, Strawderman MS and Pienta KJ: Change in serum prostate-specific antigen as a marker of response to cytotoxic therapy for hormone-refractory prostate cancer. J Clin Oncol. 16:1835–1843. 1998.PubMed/NCBI | |
Petrylak DP, Ankerst DP, Jiang CS, et al: Evaluation of prostate-specific antigen declines for surrogacy in patients treated on SWOG 99–16. J Natl Cancer Inst. 98:516–521. 2006.PubMed/NCBI | |
Colloca G: Prostate-specific antigen kinetics as a surrogate endpoint in clinical trials of metastatic castration-resistant prostate cancer: a review. Cancer Treat Rev. 38:1020–1026. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berry W and Eisenberger M: Achieving treatment goals for hormone-refractory prostate cancer with chemotherapy. Oncologist. 10(Suppl 3): 30–39. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ross RW, Galsky MD, Febbo P, et al: Phase 2 study of neoadjuvant docetaxel plus bevacizumab in patients with high-risk localized prostate cancer: a Prostate Cancer Clinical Trials Consortium trial. Cancer. 118:4777–4784. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sokoll LJ, Sanda MG, Feng Z, et al: A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [-2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev. 19:1193–1200. 2010. | |
Yap TA, Swanton C and de Bono JS: Personalization of prostate cancer prevention and therapy: are clinically qualified biomarkers in the horizon? EPMA J. 3:32012. View Article : Google Scholar : PubMed/NCBI | |
Sala A, Bettuzzi S, Pucci S, Chayka O, Dews M and Thomas-Tikhonenko A: Regulation of CLU gene expression by oncogenes and epigenetic factors implications for tumorigenesis. Adv Cancer Res. 105:115–132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Girard FP, Byrne J, Downes M, et al: Detecting soluble clusterin in in-vitro and in-vivo models of prostate cancer. Neoplasma. 57:488–493. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miyake H, Muramaki M, Furukawa J, Kurahashi T and Fujisawa M: Serum level of clusterin and its density in men with prostate cancer as novel biomarkers reflecting disease extension. Urology. 75:454–459. 2010. View Article : Google Scholar | |
Sensibar JA, Sutkowski DM, Raffo A, et al: Prevention of cell death induced by tumor necrosis factor α in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res. 55:2431–2437. 1995. | |
Sallman DA, Chen X, Zhong B, et al: Clusterin mediates TRAIL resistance in prostate tumor cells. Mol Cancer Ther. 6:2938–2947. 2007. View Article : Google Scholar : PubMed/NCBI | |
So A, Sinnemann S, Huntsman D, Fazli L and Gleave M: Knockdown of the cytoprotective chaperone, clusterin, chemosensitizes human breast cancer cells both in vitro and in vivo. Mol Cancer Ther. 4:1837–1849. 2005. View Article : Google Scholar | |
Park DC, Yeo SG, Wilson MR, et al: Clusterin interacts with paclitaxel and confer paclitaxel resistance in ovarian cancer. Neoplasia. 10:964–972. 2008.PubMed/NCBI | |
Tang Y, Liu F, Zheng C, Sun S and Jiang Y: Knockdown of clusterin sensitizes pancreatic cancer cells to gemcitabine chemotherapy by ERK1/2 inactivation. J Exp Clin Cancer Res. 31:732012. View Article : Google Scholar : PubMed/NCBI | |
Breit SN, Johnen H, Cook AD, et al: The TGF-β superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors. 29:187–195. 2011. | |
Brown DA, Stephan C, Ward RL, et al: Measurement of serum levels of macrophage inhibitory cytokine 1 combined with prostate-specific antigen improves prostate cancer diagnosis. Clin Cancer Res. 12:89–96. 2006. View Article : Google Scholar | |
Selander KS, Brown DA, Sequeiros GB, et al: Serum macrophage inhibitory cytokine-1 concentrations correlate with the presence of prostate cancer bone metastases. Cancer Epidemiol Biomarkers Prev. 16:532–537. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brown DA, Hance KW, Rogers CJ, et al: Serum macrophage inhibitory cytokine-1 (MIC-1/GDF15): a potential screening tool for the prevention of colon cancer? Cancer Epidemiol Biomarkers Prev. 21:337–346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ignatoski KM, Friedman J, Escara-Wilke J, et al: Change in markers of bone metabolism with chemotherapy for advanced prostate cancer: interleukin-6 response is a potential early indicator of response to therapy. J Interferon Cytokine Res. 29:105–112. 2009. View Article : Google Scholar | |
Codony-Servat J, Marin-Aguilera M, Visa L, et al: Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate. 73:512–521. 2013. View Article : Google Scholar | |
Ito M, Saito K, Yasuda Y, et al: Prognostic impact of C-reactive protein for determining overall survival of patients with castration-resistant prostate cancer treated with docetaxel. Urology. 78:1131–1135. 2011. View Article : Google Scholar | |
Kantoff PW, Higano CS, Shore ND, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI | |
de Bono JS, Oudard S, Ozguroglu M, et al: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 376:1147–1154. 2010. | |
Yin L, Hu Q and Hartmann RW: Recent progress in pharmaceutical therapies for castration-resistant prostate cancer. Int J Mol Sci. 14:13958–13978. 2013. View Article : Google Scholar : PubMed/NCBI | |
Saad F, Hotte S, North S, et al: Randomized phase II trial of custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin Cancer Res. 17:5765–5773. 2011. View Article : Google Scholar | |
Hudes G, Tagawa ST, Whang YE, et al: A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 31:669–676. 2013. View Article : Google Scholar | |
Di Lorenzo G, Figg WD, Fossa SD, et al: Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur Urol. 54:1089–1094. 2008. | |
Kelly WK, Halabi S, Carducci M, et al: Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 30:1534–1540. 2012. View Article : Google Scholar | |
Adamo V, Noto L, Franchina T, et al: Emerging targeted therapies for castration-resistant prostate cancer. Front Endocrinol (Lausanne). 3:732012.PubMed/NCBI | |
Galsky MD and Vogelzang NJ: Docetaxel-based combination therapy for castration-resistant prostate cancer. Ann Oncol. 21:2135–2144. 2010. View Article : Google Scholar : PubMed/NCBI | |
Beer TM, Ryan CW, Venner PM, et al: Intermittent chemotherapy in patients with metastatic androgen-independent prostate cancer: results from ASCENT, a double-blinded, randomized comparison of high-dose calcitriol plus docetaxel with placebo plus docetaxel. Cancer. 112:326–330. 2008. View Article : Google Scholar |