1
|
Coles BF, Chen G, Kadlubar FF and
Radominska-Pandya A: Interindividual variation and organ-specific
patterns of glutathione S transferase alpha, mu, and pi expression
in gastrointestinal ltract mucosa of normal individuals. Arch
Biochem Biophys. 403:270–276. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hayes JD, Flanagan JU and Jowsey IR:
Glutathionetransferases. Annu Rev Pharmacol Toxicol. 45:51–88.
2005.
|
3
|
Board PG, Webb GC and Coggan M: Isolation
of a cDNA clone and localization of the human glutathione
S-transferase 3 genes to chromosome bands 11q13 and 12q13–14. Ann
Hum Genet. 53:205–213. 1989.PubMed/NCBI
|
4
|
Islam MQ, Platz A, Szpirer J, Szpirer C,
et al: Chromosomal localization of human glutathione transferase
genes of classes alpha, mu, and pi. Hum Genet. 82:338–342. 1989.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ranganathan S and Tew KD:
Immunohistochemical localization of glutathione S-transferases α,
μ, and π in normal tissue and carcinomas from human colon.
Carcinogenesis. 12:2383–2387. 1991.
|
6
|
Miyanishi K, Takayama T, Ohi M, et al:
Glutathione Stransferase-π overexpression is closely associated
with K-ras mutation during human colon carcinogenesis.
Gastroenterology. 121:865–874. 2001.
|
7
|
Adler V, Yin Z, Fuchs SY, et al:
Regulation of JNK signaling by GSTp. EMBO J. 18:1321–1334. 1999.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Townsend DM, Manevich Y, He L, Hutchens S,
et al: Novel role for glutathione S-transferase pi: regulator of
protein S-glutathionylation following oxidative and nitrosative
stress. J Bio Chem. 284:436–445. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lo HW and Ali-Osman F: Genetic
polymorphism and function of glutathione S-transferases in tumor
drug resistance. Curr Opin Pharmacol. 7:367–374. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Henderson CJ, Smith AG, Ure J, Brown K, et
al: Increased skin tumorigenesis in mice lacking pi class
glutathione S-transferases. Proc Natl Acad Sci USA. 95:5275–5280.
1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wright JL and Lange PH: Newer potential
biomarkers in prostate cancer. Rev Urol. 9:207–213. 2007.PubMed/NCBI
|
12
|
Chen CL, Sheen TS, Lou LU and Huang AC:
Expression of multidrug resistance 1 and
glutathione-S-transferase-Pi protein in nasopharyngeal carcinoma.
Hum Path. 32:1240–1244. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cullen KJ, Newkirk KA, Schumaker LM,
Aldosari N, et al: Glutathione-S-transferase pi amplification is
associated with cisplatin resistance in head and neck squamous cell
carcinoma cell lines and primary tumors. Cancer Res. 63:8097–8102.
2003.PubMed/NCBI
|
14
|
Li M and Gu J: Changing patterns of
colorectal cancer in China over a period of 20 years. World J
Gastroenterol. 11:4685–4688. 2005.PubMed/NCBI
|
15
|
Kinzler KW and Vogelstein B: Lessons from
hereditary colon cancer. Cell. 87:159–170. 1996. View Article : Google Scholar
|
16
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002.PubMed/NCBI
|
17
|
Cheung P, Allis CD and Sassone-Corsi P:
Signaling to chromatin through histone modifications. Cell.
103:263–271. 2000. View Article : Google Scholar
|
18
|
Wang Y, Wysocka J, Sayegh J, et al: Human
PAD4 regulates histone arginine methylation levels via
demethylimination. Science. 306:279–283. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Garinis GA, Patrinos GP, Spanakis NE and
Menounos PG: DNA hypermethylation: when tumour suppressor genes go
silent. Hum Gene. 111:115–127. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Craig JM: Heterochromatin - many flavours,
common themes. Bioessays. 27:17–28. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Robertson KD and Wolffe AP: DNA
methylation in health and disease. Nat Rev Gene. 1:11–19. 2000.
View Article : Google Scholar
|
22
|
Heard E, Rougeulle C, Arnaud D, Avner P,
et al: Methylation of histone H3 at Lys-9 is an early mark on the X
chromosome during X inactivation. Cell. 107:727–738. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Rountree MR, Bachman KE, Herman JG and
Baylin SB: DNA methylation, chromatin inheritance, and cancer.
Oncogene. 20:3156–3165. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Watt PM, Kumar R and Kees UR: Promoter
demethylation accompanies reactivation of the HOX11 proto-oncogene
in leukemia. Genes Chromosomes Cancer. 29:371–377. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Schübeler D, MacAlpine DM, Scalzo D, et
al: The histone modification pattern of active genes revealed
through genome-wide chromatin analysis of a higher eukaryote. Genes
Dev. 18:1263–1271. 2004.PubMed/NCBI
|
26
|
Berger SL: The complex language of
chromatin regulation during transcription. Nature. 447:407–412.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Moffat GJ, McLaren AW and Wolf CR:
Sp1-mediated transcriptional activation of the human Pi class
glutathione S-transferase promoter. J Bio Chem. 271:1054–1060.
1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
Duvoix A, Schnekenburger M, Delhalle S, et
al: Expression of glutathione S-transferase P1-1 in leukemic cells
is regulated by inducible AP-1 binding. Cancer Lett. 216:207–219.
2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Morceau F, Duvoix A, Dehalle S,
Schnekenburger M, et al: Regulation of glutathione S-transferase
P1-1 gene expression by NF-kappa B in tumor necrosis factor
alpha-treated K562 leukemia cells. Biochem Pharma. 67:1227–1238.
2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Moon PG, Lee JE, You S, et al: Proteomic
analysis of urinary exosomes from patients of early IgA nephropathy
and thin basement membrane nephropathy. Proteomics. 11:2459–2475.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Silva JC, Denny R, Dorschel CA, et al:
Quantitative proteomic analysis by accurate mass retention time
pairs. Anal Chem. 77:2187–2200. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Karius T, Schnekenburger M, Ghelfi J,
Walter J, et al: Reversible epigenetic fingerprint-mediated
glutathione-S-transferase P1 gene silencing in human leukemia cell
lines. Biochem Pharma. 81:1329–1342. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Carmichael J, DeGraff WG, Gazdar AF, Minna
JD, et al: Evaluation of a tetrazolium-based semiautomated
colorimetric assay: assessment of chemosensitivity testing. Cancer
Res. 47:936–941. 1987.PubMed/NCBI
|
34
|
Rushmore TH and Pickett CB: Glutathione
S-transferases, structure, regulation, and therapeutic
implications. J Bio Chem. 268:11475–11478. 1993.PubMed/NCBI
|
35
|
Townsend DM and Tew KD: The role of
glutathione-S-transferase in anti-cancer drug resistance. Oncogene.
22:7369–7375. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sakai M, Okuda A and Muramatsu M: Multiple
regulatory elements and phorbol 12-O-tetradecanoate-13-acetate
responsiveness of the rat placental glutathione transferase gene.
Proc Nat Acad Sci USA. 85:9456–9460. 1988. View Article : Google Scholar : PubMed/NCBI
|
37
|
Osada S, Takano K, Nishihara T, Suzuki T,
et al: CCAAT/enhancer-binding proteins alpha and beta interact with
the silencer element in the promoter of glutathione S-transferase P
gene during hepato-carcinogenesis. J Bio Chem. 270:31288–31293.
1995. View Article : Google Scholar
|
38
|
Dixon KH, Cowell IG, Xia CL, Pemble SE, et
al: Control of expression of the human glutathione S-transferase pi
gene differs from its rat orthologue. Biochem Biophy Res Commun.
163:815–822. 1989. View Article : Google Scholar : PubMed/NCBI
|
39
|
Duvoix A, Schmitz M, Schnekenburger M, et
al: Transcriptional regulation of glutathione S-transferase P1-1 in
human leukemia. Biofactors. 17:131–138. 2003. View Article : Google Scholar : PubMed/NCBI
|