Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (Review)
- Authors:
- Camilla Evangelisti
- Cecilia Evangelisti
- Francesca Chiarini
- Annalisa Lonetti
- Francesca Buontempo
- Daniela Bressanin
- Alessandra Cappellini
- Ester Orsini
- James A. McCubrey
- Alberto M. Martelli
-
Affiliations: Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy, Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy, Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA - Published online on: June 26, 2014 https://doi.org/10.3892/ijo.2014.2525
- Pages: 909-918
This article is mentioned in:
Abstract
Farhi DC and Rosenthal NS: Acute lymphoblastic leukemia. Clin Lab Med. 20:17–28. 2000. | |
Mullighan CG: Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest. 122:3407–3415. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brown C: The genomics revolution: relevance in healthcare today and tomorrow. J R Coll Physicians Edinb. 42:248–250. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao WL: Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia. 24:13–21. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kox C, Zimmermann M, Stanulla M, et al: The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function. Leukemia. 24:2005–2013. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pui CH, Robison LL and Look AT: Acute lymphoblastic leukaemia. Lancet. 371:1030–1043. 2008. View Article : Google Scholar : PubMed/NCBI | |
Koch U and Radtke F: Notch in T-ALL: new players in a complex disease. Trends Immunol. 32:434–442. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hoelzer D and Gokbuget N: T-cell lymphoblastic lymphoma and T-cell acute lymphoblastic leukemia: a separate entity? Clin Lymphoma Myeloma. 9:S214–S221. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alharbi RA, Pettengell R, Pandha HS and Morgan R: The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. 27:1000–1008. 2013. View Article : Google Scholar : PubMed/NCBI | |
Iacobucci I, Papayannidis C, Lonetti A, Ferrari A, Baccarani M and Martinelli G: Cytogenetic and molecular predictors of outcome in acute lymphocytic leukemia: recent developments. Curr Hematol Malig Rep. 7:133–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bains T, Heinrich MC, Loriaux MM, et al: Newly described activating JAK3 mutations in T-cell acute lymphoblastic leukemia. Leukemia. 26:2144–2146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jenkinson S, Koo K, Mansour MR, et al: Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on the MRC UKALL 2003 trial. Leukemia. 27:41–47. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blackburn JS, Liu S, Raiser DM, et al: Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia. 26:2069–2078. 2012. View Article : Google Scholar | |
Lhermitte L, Ben Abdelali R, Villarese P, et al: Receptor kinase profiles identify a rationale for multitarget kinase inhibition in immature T-ALL. Leukemia. 27:305–314. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cialfi S, Palermo R, Manca S, et al: Glucocorticoid sensitivity of T-cell lymphoblastic leukemia/lymphoma is associated with glucocorticoid receptor-mediated inhibition of Notch1 expression. Leukemia. 27:485–488. 2013. View Article : Google Scholar | |
Malyukova A, Brown S, Papa R, et al: FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia. 27:1053–1062. 2013. View Article : Google Scholar : PubMed/NCBI | |
Correia NC, Durinck K, Leite AP, et al: Novel TAL1 targets beyond protein-coding genes: identification of TAL1-regulated microRNAs in T-cell acute lymphoblastic leukemia. Leukemia. 27:1603–1606. 2013. View Article : Google Scholar | |
Lv M, Zhang X, Jia H, et al: An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-a and cAMP/PKA pathways. Leukemia. 26:769–777. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schotte D, Pieters R and Den Boer ML: MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia. 26:1–12. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tosello V and Ferrando AA: The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol. 4:199–210. 2013. View Article : Google Scholar : PubMed/NCBI | |
Van Vlierberghe P and Ferrando A: The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 122:3398–3406. 2012.PubMed/NCBI | |
Buss EC and Ho AD: Leukemia stem cells. Int J Cancer. 129:2328–2336. 2011. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: The cancer stem cell: premises, promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kreso A and Dick JE: Evolution of the cancer stem cell model. Cell Stem Cell. 14:275–291. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS and Blair A: Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood. 109:674–682. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chiu PP, Jiang H and Dick JE: Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood. 116:5268–5279. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Gutierrez A, Goff DJ, et al: NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches. PloS One. 7:e397252012. View Article : Google Scholar : PubMed/NCBI | |
Gerby B, Clappier E, Armstrong F, et al: Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations. Leukemia. 25:1249–1258. 2011. View Article : Google Scholar | |
Silva A, Girio A, Cebola I, Santos CI, Antunes F and Barata JT: Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia. 25:960–967. 2011. View Article : Google Scholar : PubMed/NCBI | |
Benjamin D, Colombi M, Moroni C and Hall MN: Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 10:868–880. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lv X, Ma X and Hu Y: Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment. Expert Opin Drug Discov. 8:991–1012. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dienstmann R, Rodon J, Serra V and Tabernero J: Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 13:1021–1031. 2014. View Article : Google Scholar : PubMed/NCBI | |
Steelman LS, Franklin RA, Abrams SL, et al: Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 25:1080–1094. 2011. View Article : Google Scholar : PubMed/NCBI | |
Memmott RM and Dennis PA: Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 21:656–664. 2009. View Article : Google Scholar : PubMed/NCBI | |
Finlay MR and Griffin RJ: Modulation of DNA repair by pharmacological inhibitors of the PIKK protein kinase family. Bioorg Med Chem Lett. 22:5352–5359. 2012. View Article : Google Scholar : PubMed/NCBI | |
Laplante M and Sabatini DM: mTOR signaling in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zoncu R, Efeyan A and Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 12:21–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fingar DC and Blenis J: Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 23:3151–3171. 2004. View Article : Google Scholar : PubMed/NCBI | |
Inoki K, Li Y, Zhu T, Wu J and Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 4:648–657. 2002. View Article : Google Scholar : PubMed/NCBI | |
Volkers M and Sussman M: mTOR/PRAS40 interaction: hypertrophy or proliferation. Cell Cycle. 12:3579–3580. 2013. View Article : Google Scholar : PubMed/NCBI | |
Laplante M and Sabatini DM: mTOR signaling at a glance. J Cell Sci. 122:3589–3594. 2009. View Article : Google Scholar : PubMed/NCBI | |
Browne GJ and Proud CG: A novel mTOR-regulated phosphorylation site in elongation f actor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol. 24:2986–2997. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ma XM and Blenis J: Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 10:307–318. 2009. View Article : Google Scholar : PubMed/NCBI | |
McCubrey JA, Steelman LS, Chappell WH, et al: Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget. 3:954–987. 2012.PubMed/NCBI | |
Martelli AM, Evangelisti C, Chappell W, et al: Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia. 25:1064–1079. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK and Puigserver P: mTOR controls mitochondrial oxidative function through a YY1-PGC-1a transcriptional complex. Nature. 450:736–740. 2007. View Article : Google Scholar | |
Majumder PK, Febbo PG, Bikoff R, et al: mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 10:594–601. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yecies JL and Manning BD: Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 71:2815–2820. 2011. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa N, Hara T, Kaizuka T, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N: The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 22:132–139. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Sarbassov dos D, Samudio IJ, et al: Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood. 109:3509–3512. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Martinez JM and Alessi DR: mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 416:375–385. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ikenoue T, Inoki K, Yang Q, Zhou X and Guan KL: Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 27:1919–1931. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oh WJ and Jacinto E: mTOR complex 2 signaling and functions. Cell Cycle. 10:2305–2316. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tamburini J, Green AS, Chapuis N, et al: Targeting translation in acute myeloid leukemia: a new paradigm for therapy? Cell Cycle. 8:3893–3899. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shah OJ, Wang Z and Hunter T: Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 14:1650–1656. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bhaskar PT and Hay N: The two TORCs and Akt. Dev Cell. 12:487–502. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lang SA, Hackl C, Moser C, et al: Implication of RICTOR in the mTOR inhibitor-mediated induction of insulin-like growth factor-I receptor (IGF-IR) and human epidermal growth factor receptor-2 (Her2) expression in gastrointestinal cancer cells. Biochim Biophys Acta. 1803:435–442. 2010. View Article : Google Scholar | |
Xu X, Sarikas A, Dias-Santagata DC, et al: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell. 30:403–414. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sriburi R, Jackowski S, Mori K and Brewer JW: XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol. 167:35–41. 2004. View Article : Google Scholar : PubMed/NCBI | |
Boulbes D, Chen CH, Shaikenov T, et al: Rictor phosphorylation on the Thr-1135 site does not require mammalian target of rapamycin complex 2. Mol Cancer Res. 8:896–906. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maehama T and Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sansal I and Sellers WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 22:2954–2963. 2004. View Article : Google Scholar | |
Kalesnikoff J, Sly LM, Hughes MR, et al: The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol. 149:87–103. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Sasaki T, Kozieradzki I, et al: SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 13:786–791. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bunney TD and Katan M: Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer. 10:342–352. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seshacharyulu P, Pandey P, Datta K and Batra SK: Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 335:9–18. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Lasky JL, Chang CJ, et al: Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature. 453:529–533. 2008. View Article : Google Scholar | |
Guo W, Schubbert S, Chen JY, et al: Suppression of leukemia development caused by PTEN loss. Proc Natl Acad Sci USA. 108:1409–1414. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hoshii T, Kasada A, Hatakeyama T, et al: Loss of mTOR complex 1 induces developmental blockage in early T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia cells. Proc Natl Acad Sci USA. 111:3805–3810. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang SA, Pacold ME, Cervantes CL, et al: mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science. 341:12365662013. View Article : Google Scholar : PubMed/NCBI | |
Chiarini F, Fala F, Tazzari PL, et al: Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res. 69:3520–3528. 2009. View Article : Google Scholar : PubMed/NCBI | |
Evangelisti C, Ricci F, Tazzari P, et al: Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia. 25:781–791. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bressanin D, Evangelisti C, Ricci F, et al: Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels. Oncotarget. 3:811–823. 2012.PubMed/NCBI | |
Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL and Morrison SJ: Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell. 11:415–428. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mullighan CG: Genomic profiling of B-progenitor acute lymphoblastic leukemia. Best Pract Res Clin Haematol. 24:489–503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Inaba H, Greaves M and Mullighan CG: Acute lymphoblastic leukaemia. Lancet. 381:1943–1955. 2013. View Article : Google Scholar | |
Jotta PY, Ganazza MA, Silva A, et al: Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia. Leukemia. 24:239–242. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karrman K, Forestier E, Heyman M, et al: Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome. Genes Chromosomes Cancer. 48:795–805. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martelli AM, Chiarini F, Evangelisti C, et al: Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget. 3:371–394. 2012.PubMed/NCBI | |
Nemes K, Sebestyen A, Mark A, et al: Mammalian target of rapamycin (mTOR) activity dependent phospho-protein expression in childhood acute lymphoblastic leukemia (ALL). PLoS One. 8:e593352013. View Article : Google Scholar : PubMed/NCBI | |
Gutierrez A, Sanda T, Grebliunaite R, et al: High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 114:647–650. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bandapalli OR, Zimmermann M, Kox C, et al: NOTCH1 activation clinically antagonizes the unfavorable effect of PTEN inactivation in BFM-treated children with precursor T-cell acute lymphoblastic leukemia. Haematologica. 98:928–936. 2013. View Article : Google Scholar | |
Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al: Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol. 31:4333–4342. 2013. View Article : Google Scholar | |
Grossmann V, Haferlach C, Weissmann S, et al: The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer. 52:410–422. 2013. View Article : Google Scholar : PubMed/NCBI | |
Palomero T, Sulis ML, Cortina M, et al: Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 13:1203–1210. 2007. View Article : Google Scholar : PubMed/NCBI | |
Palomero T, Lim WK, Odom DT, et al: NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 103:18261–18266. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gutierrez A, Grebliunaite R, Feng H, et al: Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med. 208:1595–1603. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mavrakis KJ, Wolfe AL, Oricchio E, et al: Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol. 12:372–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Silva A, Yunes JA, Cardoso BA, et al: PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest. 118:3762–3774. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hales EC, Orr SM, Larson Gedman A, Taub JW and Matherly LH: Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem. 288:22836–22848. 2013. View Article : Google Scholar | |
Medyouf H, Gusscott S, Wang H, et al: High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med. 208:1809–1822. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cardoso BA, Martins LR, Santos CI, et al: Interleukin-4 stimulates proliferation and growth of T-cell acute lymphoblastic leukemia cells by activating mTOR signaling. Leukemia. 23:206–208. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA and Boussiotis VA: Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med. 200:659–669. 2004. View Article : Google Scholar | |
Scupoli MT, Vinante F, Krampera M, et al: Thymic epithelial cells promote survival of human T-cell acute lymphoblastic leukemia blasts: the role of interleukin-7. Haematologica. 88:1229–1237. 2003.PubMed/NCBI | |
Zenatti PP, Ribeiro D, Li W, et al: Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 43:932–939. 2011. View Article : Google Scholar | |
Wong D and Korz W: Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin Cancer Res. 14:7975–7980. 2008. View Article : Google Scholar | |
Scupoli MT, Donadelli M, Cioffi F, et al: Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways. Haematologica. 93:524–532. 2008.PubMed/NCBI | |
Pillozzi S, Masselli M, De Lorenzo E, et al: Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood. 117:902–914. 2011. View Article : Google Scholar | |
Heitman J, Movva NR and Hall MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 253:905–909. 1991. View Article : Google Scholar | |
Zhou H, Luo Y and Huang S: Updates of mTOR inhibitors. Anticancer Agents Med Chem. 10:571–581. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schuler W, Sedrani R, Cottens S, et al: SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation. 64:36–42. 1997. View Article : Google Scholar : PubMed/NCBI | |
Avellino R, Romano S, Parasole R, et al: Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood. 106:1400–1406. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chan SM, Weng AP, Tibshirani R, Aster JC and Utz PJ: Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood. 110:278–286. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu KN, Zhao YM, He Y, et al: Rapamycin interacts synergistically with idarubicin to induce T-leukemia cell apoptosis in vitro and in a mesenchymal stem cell simulated drug-resistant microenvironment via Akt/mammalian target of rapamycin and extracellular signal-related kinase signaling pathways. Leuk Lymphoma. 55:668–676. 2014. | |
Akers LJ, Fang W, Levy AG, Franklin AR, Huang P and Zweidler-McKay PA: Targeting glycolysis in leukemia: a novel inhibitor 3-BrOP in combination with rapamycin. Leukemia Res. 35:814–820. 2011. View Article : Google Scholar : PubMed/NCBI | |
Batista A, Barata JT, Raderschall E, et al: Targeting of active mTOR inhibits primary leukemia T cells and synergizes with cytotoxic drugs and signaling inhibitors. Exp Hematol. 39:457–472. e4532011. View Article : Google Scholar : PubMed/NCBI | |
Houghton PJ, Morton CL, Kolb EA, et al: Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer. 50:799–805. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yee KW, Zeng Z, Konopleva M, et al: Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 12:5165–5173. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rizzieri DA, Feldman E, Dipersio JF, et al: A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 14:2756–2762. 2008. View Article : Google Scholar | |
Tamburini J, Green AS, Bardet V, et al: Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood. 114:1618–1627. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chiarini F, Grimaldi C, Ricci F, et al: Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res. 70:8097–8107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fox CJ, Hammerman PS and Thompson CB: The Pim kinases control rapamycin-resistant T cell survival and activation. J Exp Med. 201:259–266. 2005. View Article : Google Scholar | |
Zhang F, Beharry ZM, Harris TE, et al: PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther. 8:846–853. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin YW, Beharry ZM, Hill EG, et al: A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood. 115:824–833. 2010. View Article : Google Scholar | |
Tamburini J, Chapuis N, Bardet V, et al: Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 111:379–382. 2008. View Article : Google Scholar | |
Carracedo A, Ma L, Teruya-Feldstein J, et al: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 118:3065–3074. 2008.PubMed/NCBI | |
Efeyan A and Sabatini DM: mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol. 22:169–176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bertacchini J, Guida M, Accordi B, et al: Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia. Apr 4–2014.(E-pub ahead of print). | |
Park S, Chapuis N, Saint Marcoux F, et al: A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse. Leukemia. 27:1479–1486. 2013. View Article : Google Scholar : PubMed/NCBI | |
Daver N, Kantarjian H, Thomas D, et al: A phase I/II study of hyper-CVAD plus everolimus in patients with relapsed/refractory acute lymphoblastic leukemia. In: 55th ASH Annual Meeting; Blood. 122. abs. 3916. 2013 | |
Fan QW, Knight ZA, Goldenberg DD, et al: A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell. 9:341–349. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cho DC, Cohen MB, Panka DJ, et al: The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res. 16:3628–3638. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karar J, Cerniglia GJ, Lindsten T, Koumenis C and Maity A: Dual PI3K/mTOR inhibitor NVP-BEZ235 suppresses hypoxia-inducible factor (HIF)-1α expression by blocking protein translation and increases cell death under hypoxia. Cancer Biol Ther. 13:1102–1111. 2012.PubMed/NCBI | |
Schenone S, Brullo C, Musumeci F, Radi M and Botta M: ATP-competitive inhibitors of mTOR: an update. Curr Med Chem. 18:2995–3014. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shepherd C, Banerjee L, Cheung CW, et al: PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia. 27:650–660. 2013. View Article : Google Scholar : PubMed/NCBI | |
Raynaud FI, Eccles S, Clarke PA, et al: Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 67:5840–5850. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maira SM, Stauffer F, Brueggen J, et al: Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 7:1851–1863. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schult C, Dahlhaus M, Glass A, et al: The dual kinase inhibitor NVP-BEZ235 in combination with cytotoxic drugs exerts anti-proliferative activity towards acute lymphoblastic leukemia cells. Anticancer Res. 32:463–474. 2012.PubMed/NCBI | |
Shortt J, Martin BP, Newbold A, et al: Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Blood. 121:2964–2974. 2013. View Article : Google Scholar : PubMed/NCBI | |
Woods D and Turchi JJ: Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther. 14:379–389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kampa-Schittenhelm KM, Heinrich MC, Akmut F, et al: Cell cycle-dependent activity of the novel dual PI3K-mTORC1/2 inhibitor NVP-BGT226 in acute leukemia. Mol Cancer. 12:462013. View Article : Google Scholar : PubMed/NCBI | |
Soria JC, Cortes J, Massard C, et al: Phase I safety, pharmacokinetic and pharmacodynamic trial of BMS-599626 (AC480), an oral pan-HER receptor tyrosine kinase inhibitor, in patients with advanced solid tumors. Ann Oncol. 23:463–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Janes MR, Limon JJ, So L, et al: Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med. 16:205–213. 2010. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Echeverria C and Sellers WR: Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 27:5511–5526. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Echeverria C: Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. Bioorg Med Chem Lett. 20:4308–4312. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gentzler RD, Altman JK and Platanias LC: An overview of the mTOR pathway as a target in cancer therapy. Expert Opin Ther Targets. 16:481–489. 2012. View Article : Google Scholar : PubMed/NCBI | |
Altman JK, Sassano A, Kaur S, et al: Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res. 17:4378–4388. 2011. View Article : Google Scholar : PubMed/NCBI | |
Willems L, Chapuis N, Puissant A, et al: The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia. 26:1195–1202. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gupta M, Hendrickson AE, Yun SS, et al: Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies. Blood. 119:476–487. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feldman ME, Apsel B, Uotila A, et al: Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7:e382009. View Article : Google Scholar : PubMed/NCBI | |
Janes MR, Vu C, Mallya S, et al: Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia. 27:586–594. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peng C, Chen Y, Li D and Li S: Role of Pten in leukemia stem cells. Oncotarget. 1:156–160. 2010.PubMed/NCBI | |
Yilmaz OH, Valdez R, Theisen BK, et al: Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 441:475–482. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaplan B, Qazi Y and Wellen JR: Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev. Mar 12–2014.(Epub ahead of print). | |
Markman B, Tabernero J, Krop I, et al: Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors. Ann Oncol. 23:2399–2408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mallya S, Fitch BA, Lee JS, So L, Janes MR and Fruman DA: Resistance to mTOR kinase inhibitors in lymphoma cells lacking 4EBP1. PloS One. 9:e888652014. View Article : Google Scholar |