MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1
Retraction in: /10.3892/ijo.2023.5525
- Authors:
- Hongyi Zhang
- Zhiqiang Feng
- Rui Huang
- Zhenglin Xia
- Guoan Xiang
- Jinqian Zhang
-
Affiliations: Department of Hepatobiliary Surgery, Air Force General Hospital, Beijing 100142, P.R. China, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China, Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou 510515, P.R. China - Published online on: August 13, 2014 https://doi.org/10.3892/ijo.2014.2596
- Pages: 2143-2152
This article is mentioned in:
Abstract
Herold C, Reck T, Fischler P, et al: Prognosis of a large cohort of patients with hepatocellular carcinoma in a single European centre. Liver. 22:23–28. 2002. View Article : Google Scholar : PubMed/NCBI | |
Okuda K: Hepatocellular carcinoma. J Hepatol. 32:225–237. 2000. View Article : Google Scholar | |
Bhalla KN: Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol. 23:3971–3993. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dowman JK, Hopkins LJ, Reynolds GM, et al: Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle. Am J Pathol. 184:1550–1561. 2014. View Article : Google Scholar | |
Karagozian R, Derdák Z and Baffy G: Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism. 63:607–617. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qin H and Ruan ZH: The role of monoacylglycerol lipase (MAGL) in the cancer progress. Cell Biochem Biophys. Mar 16–2014.(Epub ahead of print). | |
Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N and Jagannath MR: Sphingolipid metabolic pathway: an overview of major roles played in human diseases. J Lipids. 2013:1789102013.PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. | |
Xu P, Vernooy SY, Guo M and Hay BA: The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 13:790–795. 2003. | |
Wightman B, Ha I and Ruvkun G: Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI | |
Reinhart BJ, Slack FJ, Basson M, et al: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
Brennecke J, Hipfner DR, Stark A, Russell RB and Cohen SM: Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 113:25–36. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW and Ruohola-Baker H: Stem cell division is regulated by the microRNA pathway. Nature. 435:974–978. 2005. View Article : Google Scholar : PubMed/NCBI | |
Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP and James RJ: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 1:882–891. 2003.PubMed/NCBI | |
Calin GA, Sevignani C, Dumitru CD, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV, Ferracin M, Liu CG, et al: MicroRNA gene expression deregulation inhumanbreast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar | |
Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI | |
He L, Thomson JM, Hemann MT, et al: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI | |
Volinia S, Calin GA, Liu CG, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pekarsky Y, Santanam U, Cimmino A, et al: Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66:11590–11593. 2006. View Article : Google Scholar : PubMed/NCBI | |
Slack FJ and Weidhaas JB: MicroRNAs as a potential magic bullet in cancer. Future Oncol. 2:73–82. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cimmino A, Calin GA, Fabbri M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Johnson SM, Grosshans H, Shingara J, et al: RAS is regulated by the let-7 microRNA family. Cell. 120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI | |
Takamizawa J, Konishi H, Yanagisawa K, et al: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mayr C, Hemann MT and Bartel DP: Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 315:1576–1579. 2007. View Article : Google Scholar : PubMed/NCBI | |
Morris JP and McManus MT: Slowing down the Ras lane: miRNAs as tumor suppressors? Sci STKE. 16:412005.PubMed/NCBI | |
He L, He X, Lowe SW and Hannon GJ: MicroRNAs join the p53 network - another piece in the tumour-suppression puzzle. Nat Rev Cancer. 7:819–822. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lizé M, Klimke A and Dobbelstein M: MicroRNA-449 in cell fate determination. Cell Cycle. 10:2874–2882. 2011.PubMed/NCBI | |
Lizé M, Pilarski S and Dobbelstein M: E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ. 17:452–458. 2010.PubMed/NCBI | |
Hida Y, Kubo Y, Murao K and Arase S: Strong expression of a longevity-related protein, SIRT1, in Bowen’s disease. Arch Dermatol Res. 299:103–106. 2007.PubMed/NCBI | |
Yeung F, Hoberg JE, Ramsey CS, et al: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23:2369–2380. 2004. View Article : Google Scholar : PubMed/NCBI | |
Walker AK, Yang F, Jiang K, et al: Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24:1403–1417. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rodgers JT and Puigserver P: Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA. 104:12861–12866. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ponugoti B, Kim DH, Xiao Z, et al: SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 285:33959–33970. 2010. View Article : Google Scholar : PubMed/NCBI | |
Truman JP, García-Barros M, Obeid LM and Hannun YA: Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta. Dec 30–2013.(Epub ahead of print). | |
Zhou B, Li C, Qi W, et al: Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia. 55:2032–2043. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ford J, Jiang M and Milner J: Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 65:10457–10463. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hamamoto R, Furukawa Y, Morita M, et al: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 6:731–740. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liu H, Chen K, et al: SIRT1 promotes tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signaling. Oncol Rep. 28:311–318. 2012.PubMed/NCBI | |
Eberle D, Hegarty B, Bossard P, Ferre P and Foufelle F: SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 86:839–848. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dif N, Euthine V, Gonnet E, et al: Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J. 400:179–188. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guillet-Deniau I, Mieulet V, Le Lay S, et al: Sterol regulatory element binding protein-1c expression and action in rat muscles: insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes. 51:1722–1728. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rome S, Lecomte V, Meugnier E, et al: Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics. 34:327–337. 2008. View Article : Google Scholar : PubMed/NCBI | |
Giandomenico V, Simonsson M, Gronroos E and Ericsson J: Coactivator dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol. 23:2587–2599. 2003. View Article : Google Scholar : PubMed/NCBI | |
Calkin AC and Tontonoz P: Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 13:213–224. 2012.PubMed/NCBI | |
Yoshikawa T, Shimano H, Amemiya-Kudo M, et al: Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol. 21:2991–3000. 2001. View Article : Google Scholar : PubMed/NCBI | |
Repa JJ, Liang G, Ou J, et al: Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14:2819–2830. 2000. View Article : Google Scholar | |
Cozzone D, Debard C, Dif N, et al: Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells. Diabetologia. 49:990–999. 2006. View Article : Google Scholar : PubMed/NCBI | |
Swinnen JV, Heemers H, van de Sande T, et al: Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol. 92:273–279. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Honda M, Takatori H, et al: Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol. 50:100–110. 2009. View Article : Google Scholar : PubMed/NCBI | |
Di Vizio D, Solomon KR and Freeman MR: Cholesterol and cholesterol-rich membranes in prostate cancer: an update. Tumori. 94:633–639. 2008.PubMed/NCBI | |
Swinnen JV, Brusselmans K and Verhoeven G: Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care. 9:358–365. 2006. View Article : Google Scholar : PubMed/NCBI | |
Freeman MR, Cinar B and Lu ML: Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer. Trends Endocrinol Metab. 16:273–279. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Hernando C, Suarez Y, Rayner KJ and Moore KJ: MicroRNAs in lipid metabolism. Curr Opin Lipidol. 22:86–92. 2011. View Article : Google Scholar | |
Krutzfeldt J and Stoffel M: MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab. 4:9–12. 2006. View Article : Google Scholar : PubMed/NCBI | |
Henry JC, Azevedo-Pouly AC and Schmittgen TD: MicroRNA replacement therapy for cancer. Pharm Res. 28:3030–3042. 2011. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Marcucci G and Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bader AG, Brown D and Winkler M: The promise of microRNA replacement therapy. Cancer Res. 70:7027–7030. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Kemper JK: Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging (Albany, NY). 2:527–534. 2010.PubMed/NCBI | |
Firestein R, Blander G, Michan S, et al: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 3:e20202008. View Article : Google Scholar : PubMed/NCBI | |
Bae HJ, Noh JH, Kim JK, et al: MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 33:2557–2567. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang RH, Sengupta K, Li C, et al: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 14:312–323. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huffman DM, Grizzle WE, Bamman MM, et al: SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 67:6612–6618. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jang KY, Kim KS, Hwang SH, et al: Expression and prognostic significance of SIRT1 in ovarian epithelial tumours. Pathology. 41:366–371. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cha EJ, Noh SJ, Kwon KS, et al: Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res. 15:4453–4459. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stunkel W, Peh BK, Tan YC, et al: Function of the SIRT1 protein deacetylase in cancer. Biotechnol J. 2:1360–1368. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang B, Wong N, et al: Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 71:4138–4149. 2011. View Article : Google Scholar : PubMed/NCBI | |
Noh JH, Jung KH, Kim JK, et al: Aberrant regulation of HDAC2 mediates proliferation of hepatocellular carcinoma cells by deregulating expression of G1/S cell cycle proteins. PLoS One. 6:e281032011. View Article : Google Scholar : PubMed/NCBI | |
Xie HJ, Noh JH, Kim JK, et al: HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer. PLoS One. 7:e342652012. View Article : Google Scholar : PubMed/NCBI | |
Buurman R, Gürlevik E, Schäffer V, et al: Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology. 143:811–820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang WC, Li X, Liu J, Lin JT and Chung LW: Activation of androgen receptor, lipogenesis and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res. 10:133–142. 2012. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA, Decker JP and Lupu R: In support of fatty acid synthase (FAS) as a metabolic oncogene: extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. J Cell Biochem. 94:1–4. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baron A, Migita T, Tang D and Loda M: Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem. 91:47–53. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Xu J, Chen H, et al: Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with hepatoma malignant progression. Nucleic Acids Res. 41:e2032013. View Article : Google Scholar : PubMed/NCBI |