1
|
Memon MA, Subramanya MS, Khan S, Hossain
MB, Osland E and Memon B: Meta-analysis of D1 versus D2 gastrectomy
for gastric adenocarcinoma. Ann Surg. 253:900–911. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Grünert S, Jechlinger M and Beug H:
Diverse cellular and molecular mechanisms contribute to epithelial
plasticity and metastasis. Nat Rev Mol Cell Biol. 4:657–665.
2003.PubMed/NCBI
|
4
|
Jain VK and Cunningham D: Targeting
angiogenesis in advanced gastric cancer: Is this end of the road?
Transl Gastrointest Cancer. 1:119–121. 2012.
|
5
|
Rose CS and Malcolm S: A TWIST in
development. Trends Genet. 13:384–387. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nierodzik ML and Karpatkin S: Thrombin
induces tumor growth, metastasis, and angiogenesis: evidence for a
thrombin-regulated dormant tumor phenotype. Cancer Cell.
10:355–362. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nierodzik ML, Plotkin A, Kajumo F and
Karpatkin S: Thrombin stimulates tumor-platelet adhesion in vitro
and metastasis in vivo. J Clin Invest. 87:229–236. 1991. View Article : Google Scholar
|
8
|
Nierodzik ML, Kajumo F and Karpatkin S:
Effect of thrombin treatment of tumor cells on adhesion of tumor
cells to platelets in vitro and tumor metastasis in vivo. Cancer
Res. 52:3267–3272. 1992.PubMed/NCBI
|
9
|
Nierodzik ML, Bain RM, Liu LX, Shivji M,
Takeshita K and Karpatkin S: Presence of the seven transmembrane
thrombin receptor on human tumour cells: effect of activation on
tumour adhesion to platelets and tumor tyrosine phosphorylation. Br
J Haematol. 92:452–457. 1996. View Article : Google Scholar
|
10
|
Klepfish A, Greco MA and Karpatkin S:
Thrombin stimulates melanoma tumor-cell binding to endothelial
cells and subendothelial matrix. Int J Cancer. 53:978–982. 1993.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zain J, Huang YQ, Feng X, Nierodzik ML, Li
JJ and Karpatkin S: Concentration dependent dual effect of thrombin
on impaired growth/apoptosis or mitogenesis in tumor cells. Blood.
95:3133–3138. 2000.PubMed/NCBI
|
12
|
Nierodzik ML, Chen K, Takeshita K, et al:
Protease-activated receptor 1 (PAR-1) is required and rate-limiting
for thrombin-enhanced experimental pulmonary metastasis. Blood.
92:3694–3700. 1998.PubMed/NCBI
|
13
|
Hu L, Lee M, Campbell W, Perez-Soler R and
Karpatkin S: Role of endogenous thrombin in tumor implantation,
seeding and spontaneous metastasis. Blood. 104:2746–2751. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wojtukiewicz MZ, Tang DG, Ciarelli JJ, et
al: Thrombin increases the metastatic potential of tumor cells. Int
J Cancer. 54:793–806. 1993. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang YQ, Li JJ, Hu L, Lee M and Karpatkin
S: Thrombin induces increased expression and secretion of VEGF from
human FS4 fibroblasts, DU145 prostate cells and CHRF
megakaryocytes. Thromb Haemost. 86:1094–1098. 2001.PubMed/NCBI
|
16
|
Caunt M, Huang YQ, Brooks PC and Karpatkin
S: Thrombin induces neoangiogenesis in the chick chorioallantoic
membrane. J Thromb Haemost. 1:2097–2102. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Coughlin SR: How the protease thrombin
talks to cells. Proc Natl Acad Sci USA. 96:11023–11027. 1999.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Vu TK, Hung DT, Wheaton VI and Coughlin
SR: Molecular cloning of a functional thrombin receptor reveals a
novel proteolytic mechanism of receptor activation. Cell.
64:1057–1068. 1991. View Article : Google Scholar : PubMed/NCBI
|
19
|
Rasmussen UB, Vouret-Craviari V, Jallat S,
et al: cDNA cloning and expression of a hamster alpha-thrombin
receptor coupled to Ca2+ mobilization. FEBS Lett.
288:123–128. 1991. View Article : Google Scholar : PubMed/NCBI
|
20
|
Even-Ram S, Uziely B, Cohen P, et al:
Thrombin receptor overexpression in malignant and physiological
invasion processes. Nat Med. 4:909–914. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Even-Ram SC, Maoz M, Pokroy E, et al:
Tumor cell invasion is promoted by activation of protease activated
receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol
Chem. 276:10952–10962. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fujimoto D, Hirono Y, Goi T, Katayama K
and Yamaguchi A: Prognostic value of protease-activated receptor-1
(PAR-1) and matrix metalloproteinase-1 (MMP-1) in gastric cancer.
Anticancer Res. 28:847–854. 2008.PubMed/NCBI
|
23
|
Fujimoto D, Hirono Y, Goi T, Katayama K,
Matsukawa S and Yamaguchi A: The activation of proteinase-activated
receptor-1 (PAR1) mediates gastric cancer cell proliferation and
invasion. BMC Cancer. 10:4432010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fujimoto D, Hirono Y, Goi T, Katayama K,
Matsukawa S and Yamaguchi A: The activation of proteinase-activated
receptor-1 (PAR1) promotes gastric cancer cell alteration of
cellular morphology related to cell motility and invasion. Int J
Oncol. 42:565–573. 2013.PubMed/NCBI
|
25
|
Ahn HS, Foster C, Boykow G, Stamford A,
Manna M and Graziano M: Inhibition of cellular action of thrombin
by N3-cyclopropyl-7-[[4-(1-methylethyl)phenyl]methyl]-7H-pyrrolo[3,
2-f ]quinazoline-1,3-diamine (SCH 79797), a nonpeptide thrombin
receptor antagonist. Biochem Pharmacol. 60:1425–1434.
2000.PubMed/NCBI
|
26
|
Manohar CF, Bray JA, Salwen HR, et al:
MYCN-mediated regulation of the MRP1 promoter in human
neuroblastoma. Oncogene. 23:753–762. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fushida S, Kinoshita J, Yagi Y, et al:
Dual anti-cancer effects of weekly intraperitoneal docetaxel in
treatment of advanced gastric cancer patients with peritoneal
carcinomatosis: A feasibility and pharmacokinetic study. Oncol Rep.
19:1305–1310. 2008.
|
28
|
Yonemura Y, Elnemr A, Endou Y, et al:
Multidisciplinary therapy for treatment of patients with peritoneal
carcinomatosis from gastric cancer. World J Gastrointest Oncol.
2:85–97. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Coughlin SR, Vu TK, Hung DT and Wheaton
VI: Characterization of a functional thrombin receptor. Issues and
opportunities. J Clin Invest. 89:351–355. 1992. View Article : Google Scholar : PubMed/NCBI
|
30
|
Song JS, Kang CM, Park CK and Yoon HK:
Thrombin induces epithelial-mesenchymal transition via PAR-1, PKC,
and ERK1/2 pathways in A549 cells. Exp Lung Res. 39:336–348. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Juncker-Jensen A, Deryugina EI, Rimann I,
et al: Tumor MMP-1 activates endothelial PAR1 to facilitate
vascular intravasation and metastatic dissemination. Cancer Res.
73:4196–4211. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ohshiro K, Bui-Nguyen TM, Divijendra Natha
RS, Schwartz AM, Levine P and Kumar R: Thrombin stimulation of
inflammatory breast cancer cells leads to aggressiveness via the
EGFR-PAR1-Pak1 pathway. Int J Biol Markers. 27:e305–e313. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Radisky DC: Epithelial-mesenchymal
transition. J Cell Sci. 118:4325–4326. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Thiery JP: Epithelial-mesenchymal
transitions in development and pathologies. Curr Opin Cell Biol.
15:740–746. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yang J, Mani SA and Weinberg RA: Exploring
a new twist on tumor metastasis. Cancer Res. 66:4549–4552. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Peinado H, Portillo F and Cano A:
Transcriptional regulation of cadherins during development and
carcinogenesis. Int J Dev Biol. 48:365–375. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang J, Mani SA, Donaher JL, et al: Twist,
a master regulator of morphogenesis, plays an essential role in
tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Thisse B, el Messal M and Perrin-Schmitt
F: The twist gene: isolation of a Drosophila zygotic gene
necessary for the establishment of dorsoventral pattern. Nucleic
Acids Res. 15:3439–3453. 1987.PubMed/NCBI
|
39
|
Grau Y, Carteret C and Simpson P:
Mutations and chromosomal rearrangements affecting the expression
of snail, a gene involved in embryonic patterning in Drosophila
melanogaster. Genetics. 108:347–360. 1984.PubMed/NCBI
|
40
|
Cano A, Pérez-Moreno MA, Rodrigo I, et al:
The transcription factor snail controls epithelial-mesenchymal
transitions by repressing E-cadherin expression. Nat Cell Biol.
2:76–83. 2000. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Batlle E, Sancho E, Franci C, et al: The
transcription factor snail is a repressor of E-cadherin gene
expression in epithelial tumour cells. Nat Cell Biol. 2:84–89.
2000. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Yokoyama K, Kamata N, Hayashi E, et al:
Reverse correlation of E-cadherin and snail expression in oral
squamous cell carcinoma cells in vitro. Oral Oncol. 37:65–71. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Blanco MJ, Moreno-Bueno G, Sarrio D, et
al: Correlation of Snail expression with histological grade and
lymph node status in breast carcinomas. Oncogene. 21:3241–3246.
2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sugimachi K, Tanaka S, Kameyama T, et al:
Transcription factor snail and progression of human hepatocellular
carcinoma. Clin Cancer Res. 9:2657–2664. 2003.PubMed/NCBI
|
45
|
Boire A, Covic L, Agarwal A, Jacques S,
Sherifi S and Kuliopulos A: PAR1 is a matrix metalloprotease-1
receptor that promotes invasion and tumorigenesis of breast cancer
cells. Cell. 120:303–313. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Rømer J, Bugge TH, Pyke C, et al:
Plasminogen and wound healing. Nat Med. 2:7251996.
|