Long non‑coding RNAs drive metastatic progression in melanoma (Review)
- Authors:
- Pouria Akhbari
- Adrian Whitehouse
- James R. Boyne
-
Affiliations: Centre for Skin Sciences, University of Bradford, Bradford, UK, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK - Published online on: October 1, 2014 https://doi.org/10.3892/ijo.2014.2691
- Pages: 2181-2186
This article is mentioned in:
Abstract
Weyers W: The ‘epidemic’ of melanoma between under- and overdiagnosis. J Cutan Pathol. 39:9–16. 2012. | |
Lomas J, Martin-Duque P, Pons M and Quintanilla M: The genetics of malignant melanoma. Front Biosci. 13:5071–5093. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hill VK, Gartner JJ, Samuels Y and Goldstein AM: The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 14:257–279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bougnoux AC and Solassol J: The contribution of proteomics to the identification of biomarkers for cutaneous malignant melanoma. Clin Biochem. 46:518–523. 2013. View Article : Google Scholar : PubMed/NCBI | |
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI | |
Clark MB, Amaral PP, Schlesinger FJ, et al: The reality of pervasive transcription. PLoS Biol. 9:e1000625discussion e1001102. 2011. View Article : Google Scholar : PubMed/NCBI | |
Crick F: Central dogma of molecular biology. Nature. 227:561–563. 1970. View Article : Google Scholar | |
Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA and Elhaik E: On the immortality of television sets: ‘function’ in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 5:578–590. 2013.PubMed/NCBI | |
Doolittle WF: Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci USA. 110:5294–5300. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tessitore A, Cicciarelli G, Del Vecchio F, et al: microRNAs in the DNA damage/repair network and cancer. Int J Genomics. 2014:8202482014. View Article : Google Scholar : PubMed/NCBI | |
Condorelli G, Latronico MV and Cavarretta E: microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 63:2177–2187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yin KJ, Hamblin M and Chen YE: Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int. April 3–2014.(Epub ahead of print). | |
Lukiw WJ and Alexandrov PN: Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol Neurobiol. 46:11–19. 2012.PubMed/NCBI | |
Filatova EV, Alieva AKh, Shadrina MI and Slominsky PA: MicroRNAs: possible role in pathogenesis of Parkinson’s disease. Biochemistry (Mosc). 77:813–819. 2012.PubMed/NCBI | |
Völler D, Ott C and Bosserhoff A: MicroRNAs in malignant melanoma. Clin Biochem. 46:909–917. 2013. | |
Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V and Kashani-Sabet M: miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem. 286:16606–16614. 2011. View Article : Google Scholar : PubMed/NCBI | |
Braig S, Mueller DW, Rothhammer T and Bosserhoff AK: MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci. 67:3535–3548. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mueller DW and Bosserhoff AK: MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer. 129:1064–1074. 2011. View Article : Google Scholar : PubMed/NCBI | |
Levati L, Pagani E, Romani S, et al: MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell Melanoma Res. 24:538–550. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Deng H, Bi F, et al: MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci. 7:133–137. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bemis LT, Chen R, Amato CM, et al: MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 68:1362–1368. 2008. View Article : Google Scholar : PubMed/NCBI | |
Segura MF, Hanniford D, Menendez S, et al: Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA. 106:1814–1819. 2009. View Article : Google Scholar : PubMed/NCBI | |
Haflidadóttir BS, Bergsteinsdóttir K, Praetorius C and Steingrímsson E: miR-148 regulates Mitf in melanoma cells. PLoS One. 5:e115742010.PubMed/NCBI | |
Karreth FA, Tay Y, Perna D, et al: In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 147:382–395. 2011. View Article : Google Scholar : PubMed/NCBI | |
Volders PJ, Helsens K, Wang X, et al: LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 41:D246–D251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brockdorff N, Ashworth A, Kay GF, et al: The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 71:515–526. 1992. View Article : Google Scholar | |
Rinn JL, Kertesz M, Wang JK, et al: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129:1311–1323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Balch CM, Gershenwald JE, Soong SJ, et al: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dickson PV and Gershenwald JE: Staging and prognosis of cutaneous melanoma. Surg Oncol Clin N Am. 20:1–17. 2011. View Article : Google Scholar | |
Zhang H, Chen Z, Wang X, Huang Z, He Z and Chen Y: Long non-coding RNA: a new player in cancer. J Hematol Oncol. 6:372013. View Article : Google Scholar : PubMed/NCBI | |
Cheetham SW, Gruhl F, Mattick JS and Dinger ME: Long noncoding RNAs and the genetics of cancer. Br J Cancer. 108:2419–2425. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tsai MC, Manor O, Wan Y, et al: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu ZH, Wang XL, Tang HM, et al: Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncol Rep. 32:395–402. 2014.PubMed/NCBI | |
Sørensen KP, Thomassen M, Tan Q, et al: Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat. 142:529–536. 2013.PubMed/NCBI | |
Qiu JJ, Lin YY, Ye LC, et al: Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 134:121–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Niinuma T, Suzuki H, Nojima M, et al: Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 72:1126–1136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu XH, Liu ZL, Sun M, Liu J, Wang ZX and De W: The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer. 13:4642013. View Article : Google Scholar : PubMed/NCBI | |
Kogo R, Shimamura T, Mimori K, et al: Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71:6320–6326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Jutooru I, Chadalapaka G, et al: HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 32:1616–1625. 2013. View Article : Google Scholar : PubMed/NCBI | |
Geng YJ, Xie SL, Li Q, Ma J and Wang GY: Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 39:2119–2128. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding C, Cheng S, Yang Z, et al: Long non-coding RNA HOTAIR promotes cell migration and invasion via down-regulation of RNA binding motif protein 38 in hepatocellular carcinoma cells. Int J Mol Sci. 15:4060–4076. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Xie XY, Wang H, Chen XL, Liu SL and Hu LN: Expression of long non-coding RNA HOTAIR mRNA in ovarian cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 44:57–59. 2013.(In Chinese). | |
Gupta RA, Shah N, Wang KC, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Zhang W, Su B and Yu B: Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. Biomed Res Int. 2013:2510982013. View Article : Google Scholar : PubMed/NCBI | |
Watanabe H: Extracellular matrix - regulation of cancer invasion and metastasis. Gan To Kagaku Ryoho. 37:2058–2061. 2010.(In Japanese). | |
Labrie M and St-Pierre Y: Epigenetic regulation of mmp-9 gene expression. Cell Mol Life Sci. 70:3109–3124. 2013. View Article : Google Scholar : PubMed/NCBI | |
Frank A, David V, Aurelie TR, Florent G, William H and Philippe B: Regulation of MMPs during melanoma progression: from genetic to epigenetic. Anticancer Agents Med Chem. 12:773–782. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khaitan D, Dinger ME, Mazar J, et al: Themelanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 71:3852–3862. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reuter JS and Mathews DH: RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 11:1292010. View Article : Google Scholar : PubMed/NCBI | |
Hofacker IL: RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinformatics. Chapter 12(Unit 12): 22004. | |
Rigoutsos I, Huynh T, Miranda K, Tsirigos A, McHardy A and Platt D: Short blocks from the noncoding parts of the human genome have instances within nearly all known genes and relate to biological processes. Proc Natl Acad Sci USA. 103:6605–6610. 2006. View Article : Google Scholar | |
Zou Y, Jiang Z, Yu X, et al: Upregulation of long noncoding RNA SPRY4-IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR-8SV/neo. PLoS One. 8:e795982013. View Article : Google Scholar : PubMed/NCBI | |
Xie HW, Wu QQ, Zhu B, et al: Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumour Biol. May 9–2014.(Epub ahead of print). | |
Guil S and Esteller M: Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol. 19:1068–1075. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tennis MA, Van Scoyk MM, Freeman SV, Vandervest KM, Nemenoff RA and Winn RA: Sprouty-4 inhibits transformed cell growth, migration and invasion, and epithelial-mesenchymal transition, and is regulated by Wnt7A through PPARgamma in non-small cell lung cancer. Mol Cancer Res. 8:833–843. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leeksma OC, Van Achterberg TA, Tsumura Y, et al: Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem. 269:2546–2556. 2002. View Article : Google Scholar : PubMed/NCBI | |
Russo A, Ficili B, Candido S, et al: Emerging targeted therapies for melanoma treatment (review). Int J Oncol. 45:516–524. 2014.PubMed/NCBI | |
Wu CF, Tan GH, Ma CC and Li L: The non-coding RNA llme23 drives the malignant property of human melanoma cells. J Genet Genomics. 40:179–188. 2013. View Article : Google Scholar : PubMed/NCBI | |
Patton JG, Porro EB, Galceran J, Tempst P and Nadal-Ginard B: Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev. 7:393–406. 1993. View Article : Google Scholar : PubMed/NCBI | |
Song X, Sun Y and Garen A: Roles of PSF protein and VL30 RNA in reversible gene regulation. Proc Natl Acad Sci USA. 102:12189–12193. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Cui Y, Zhang G, Garen A and Song X: Regulation of proto-oncogene transcription, cell proliferation, and tumori-genesis in mice by PSF protein and a VL30 noncoding RNA. Proc Natl Acad Sci USA. 106:16794–16798. 2009. View Article : Google Scholar : PubMed/NCBI | |
Song X, Wang B, Bromberg M, Hu Z, Konigsberg W and Garen A: Retroviral-mediated transmission of a mouse VL30 RNA to human melanoma cells promotes metastasis in an immunodeficient mouse model. Proc Natl Acad Sci USA. 99:6269–6273. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tsukahara T, Matsuda Y and Haniu H: PSF knockdown enhances apoptosis via downregulation of LC3B in human colon cancer cells. Biomed Res Int. 2013:2049732013. View Article : Google Scholar : PubMed/NCBI | |
Ren S, She M, Li M, et al: The RNA/DNA-binding protein PSF relocates to cell membrane and contributes cells’ sensitivity to antitumor drug, doxorubicin. Cytometry A. 85:231–241. 2014.PubMed/NCBI | |
Davies H, Bignell GR, Cox C, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Flaherty KT and McArthur G: BRAF, a target in melanoma: implications for solid tumor drug development. Cancer. 116:4902–4913. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bamford S, Dawson E, Forbes S, et al: The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 91:355–358. 2004.PubMed/NCBI | |
Jarkowski A 3rd and Khushalani NI: BRAF and beyond: tailoring strategies for the individual melanoma patient. J Carcinog. 13:12014. View Article : Google Scholar : PubMed/NCBI | |
Flockhart RJ, Webster DE, Qu K, et al: BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 22:1006–1014. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berger MF, Levin JZ, Vijayendran K, et al: Integrative analysis of the melanoma transcriptome. Genome Res. 20:413–427. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Zhang Y, Ye ZQ, et al: CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35:W345–W349. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kawada K, Sonoshita M, Sakashita H, et al: Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res. 64:4010–4017. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI |