5-FU resistance abrogates the amplified cytotoxic effects induced by inhibiting checkpoint kinase 1 in p53-mutated colon cancer cells

  • Authors:
    • Tomofumi Akasaka
    • Masahiko Tsujii
    • Jumpei Kondo
    • Yoshito Hayashi
    • Jin  Ying
    • Yuquan  Lu
    • Motohiko Kato
    • Takuya Yamada
    • Shunsuke  Yamamoto
    • Takuya Inoue
    • Yoshiki Tsujii
    • Akira Maekawa
    • Tetsuji Fujinaga
    • Eri  Shiraishi
    • Satoshi Hiyama
    • Takahiro Inoue
    • Shinichiro Shinzaki
    • Kenji  Watabe
    • Tsutomu  Nishida
    • Hideki Iijima
    • Tetsuo Takehara
  • View Affiliations

  • Published online on: October 6, 2014     https://doi.org/10.3892/ijo.2014.2693
  • Pages: 63-70
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The emergence of chemoresistance is a major limitation of current cancer therapies, and checkpoint kinase (Chk1) 1 positively correlates with resistance to chemo‑ or radio‑therapy. Cancer cells lacking p53 pathways are completely dependent on the S and G2/M checkpoints via Chk1; therefore, Chk1 inhibition enhances the cytotoxicity of DNA‑damaging agents only in p53‑deficient cells. However, little is known about the synergistic effect of Chk1 inhibition with 5‑FU, the most frequently used antimetabolite, in chemoresistant colorectal cells. In this study, we found that 5‑FU induced S‑phase arrest only in p53‑deficient colorectal cancer cells. 5‑FU treatment induced DNA damage and activation of ataxia telangiectasia mutated (ATM) and Chk1, leading to S‑phase arrest, and Chk1 inhibition using SB218078 reduced S‑phase arrest and increased apoptosis in the presence of 5‑FU. In contrast, in p53‑deficient, 5‑FU‑resistant (5FUR) colon cancer cells that we developed, 5‑FU enhanced DNA damage but did not induce Chk1/ATM activation or cell cycle arrest. SB218078 in combination with 5‑FU did not induce apoptosis. These results indicate that 5‑FU‑resistance abrogated the anticancer effect amplified by Chk1 inhibition, even in p53‑deficient cancer cells.
View Figures
View References

Related Articles

Journal Cover

January-2015
Volume 46 Issue 1

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Akasaka T, Tsujii M, Kondo J, Hayashi Y, Ying J, Lu Y, Kato M, Yamada T, Yamamoto S, Inoue T, Inoue T, et al: 5-FU resistance abrogates the amplified cytotoxic effects induced by inhibiting checkpoint kinase 1 in p53-mutated colon cancer cells. Int J Oncol 46: 63-70, 2015.
APA
Akasaka, T., Tsujii, M., Kondo, J., Hayashi, Y., Ying, J., Lu, Y. ... Takehara, T. (2015). 5-FU resistance abrogates the amplified cytotoxic effects induced by inhibiting checkpoint kinase 1 in p53-mutated colon cancer cells. International Journal of Oncology, 46, 63-70. https://doi.org/10.3892/ijo.2014.2693
MLA
Akasaka, T., Tsujii, M., Kondo, J., Hayashi, Y., Ying, J., Lu, Y., Kato, M., Yamada, T., Yamamoto, S., Inoue, T., Tsujii, Y., Maekawa, A., Fujinaga, T., Shiraishi, E., Hiyama, S., Inoue, T., Shinzaki, S., Watabe, K., Nishida, T., Iijima, H., Takehara, T."5-FU resistance abrogates the amplified cytotoxic effects induced by inhibiting checkpoint kinase 1 in p53-mutated colon cancer cells". International Journal of Oncology 46.1 (2015): 63-70.
Chicago
Akasaka, T., Tsujii, M., Kondo, J., Hayashi, Y., Ying, J., Lu, Y., Kato, M., Yamada, T., Yamamoto, S., Inoue, T., Tsujii, Y., Maekawa, A., Fujinaga, T., Shiraishi, E., Hiyama, S., Inoue, T., Shinzaki, S., Watabe, K., Nishida, T., Iijima, H., Takehara, T."5-FU resistance abrogates the amplified cytotoxic effects induced by inhibiting checkpoint kinase 1 in p53-mutated colon cancer cells". International Journal of Oncology 46, no. 1 (2015): 63-70. https://doi.org/10.3892/ijo.2014.2693