1
|
Schmidt EF and Strittmatter SM: The CRMP
family of proteins and their role in Sema3A signaling. Adv Exp Med
Biol. 600:1–11. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang LH and Strittmatter SM: Brain CRMP
forms heterotetramers similar to liver dihydropyrimidinase. J
Neurochem. 69:2261–2269. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Deo RC, Schmidt EF, Elhabazi A, et al:
Structural bases for CRMP function in plexin-dependent semaphorin3A
signaling. EMBO J. 23:9–22. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Goshima Y, Nakamura F, Strittmatter P, et
al: Collapsin-induced growth cone collapse mediated by an
intracellular protein related to UNC-33. Nature. 376:509–514. 1995.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Fukata Y, Itoh TJ, Kimura T, et al: CRMP-2
binds to tubulin heterodimers to promote microtubule assembly. Nat
Cell Biol. 4:583–591. 2002.PubMed/NCBI
|
6
|
Gu Y and Ihara Y: Evidence that collapsin
response mediator protein-2 is involved in the dynamics of
microtubules. J Biol Chem. 275:17917–17920. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yuasa-Kawada J, Suzuki R, Kano F, et al:
Axonal morphogenesis controlled by antagonistic roles of two CRMP
subtypes in microtubule organization. Eur J Neurosci. 17:2329–2343.
2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Arimura N, Inagaki N, Chihara K, et al:
Phosphorylation of collapsin response mediator protein-2 by
Rho-kinase. Evidence for two separate signaling pathways for growth
cone collapse. J Biol Chem. 275:23973–23980. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kawano Y, Yoshimura T, Tsuboi D, et al:
CRMP-2 is involved in kinesin-1-dependent transport of the
Sra-1/WAVE1 complex and axon formation. Mol Cell Biol.
25:9920–9935. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Santolini E, Puri C, Salcini AE, et al:
Numb is an endocytic protein. J Cell Biol. 151:1345–1352. 2000.
View Article : Google Scholar
|
11
|
Nishimura T, Fukata Y, Kato K, et al:
CRMP-2 regulates polarized Numb-mediated endocytosis for axon
growth. Nat Cell Biol. 5:819–826. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tan F, Thiele CJ and Li Z: Collapsin
response mediator proteins: potential diagnostic and prognostic
biomarkers in cancers. Oncol Lett. 7:1333–1340. 2014.PubMed/NCBI
|
13
|
Shih JY, Yang SC, Hong TM, et al:
Collapsin response mediator protein-1 and the invasion and
metastasis of cancer cells. J Natl Cancer Inst. 93:1392–1400. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Pan SH, Chao YC, Hung PF, et al: The
ability of LCRMP-1 to promote cancer invasion by enhancing
filopodia formation is antagonized by CRMP-1. J Clin Invest.
121:3189–3205. 2011. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Wang WL, Hong TM, Chang YL, et al:
Phosphorylation of LCRMP-1 by GSK3beta promotes filopodia
formation, migration and invasion abilities in lung cancer cells.
PLoS One. 7:e316892012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wu CC, Chen HC, Chen SJ, et al:
Identification of collapsing response mediator protein-2 as a
potential marker of colorectal carcinoma by comparative analysis of
cancer cell secretomes. Proteomics. 8:316–332. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Oliemuller E, Peláez R, Garasa S, et al:
Phosphorylated tubulin adaptor protein CRMP-2 as prognostic marker
and candidate therapeutic target for NSCLC. Int J Cancer.
132:1986–1995. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shimada K, Ishikawa T, Nakamura F, et al:
Collapsin response mediator protein 2 is involved in regulating
breast cancer progression. Breast Cancer. Feb 5–2013.(Epub ahead of
print).
|
19
|
Meyronet D, Massoma P, Thivolet F, et al:
Extensive expression of collapsin response mediator protein 5
(CRMP5) is a specific marker of high-grade lung neuroendocrine
carcinoma. Am J Surg Pathol. 32:1699–1708. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gao X, Pang J, Li LY, et al: Expression
profiling identifies new function of collapsin response mediator
protein 4 as a metastasis-suppressor in prostate cancer. Oncogene.
29:4555–4566. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Valastyan S and Weinberg RA: Tumor
metastasis: molecular insights and evolving paradigms. Cell.
147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chambers AF, Groom AC and MacDonald IC:
Dissemination and growth of cancer cells in metastatic sites. Nat
Rev Cancer. 2:563–572. 2002. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Nagrath S, Sequist LV, Maheswaran S, et
al: Isolation of rare circulating tumour cells in cancer patients
by microchip technology. Nature. 450:1235–1239. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Choueiri MB, Tu SM, Yu-Lee LY, et al: The
central role of osteoblasts in the metastasis of prostate cancer.
Cancer Metastasis Rev. 25:601–609. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chung LW: Prostate carcinoma bone-stroma
interaction and its biologic and therapeutic implications. Cancer.
97:772–778. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu TT, Sikes RA, Cui Q, et al:
Establishing human prostate cancer cell xenografts in bone:
induction of osteoblastic reaction by prostate-specific
antigen-producing tumors in athymic and SCID/bg mice using LNCaP
and lineage-derived metastatic sublines. Int J Cancer. 77:887–894.
1998. View Article : Google Scholar
|
27
|
Yang S, Zhong C, Frenkel B, et al: Diverse
biological effect and smad signaling of bone morphogenetic protein
7 in prostate tumor cells. Cancer Res. 65:5769–5777. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Pera EM, Acosta H, Gouignard N, et al:
Active signals, gradient formation and regional specificity in
neural induction. Exp Cell Res. 321:25–31. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ferrara N, Gerber HP and LeCouter J: The
biology of VEGF and its receptors. Nat Med. 9:669–676. 2003.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Takahashi H and Shibuya M: The vascular
endothelial growth factor (VEGF)/VEGF receptor system and its role
under physiological and pathological conditions. Clin Sci.
109:227–241. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hardy CL: The homing of hematopoietic stem
cells to the marrow. Am J Med Sci. 309:260–266. 1995. View Article : Google Scholar : PubMed/NCBI
|
32
|
Taichman RS, Cooper C, Keller ET, et al:
Use of the stromal cell-derived factor-1/cxcr4 pathway in prostate
cancer metastasis to bone. Cancer Res. 62:1832–1837.
2002.PubMed/NCBI
|
33
|
Zhang XH, Wang Q, Gerald W, et al: Latent
bone metastasis in breast cancer tied to Src-dependent survival
signals. Cancer Cell. 16:67–78. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hsu H, Lacey DL, Dunstan CR, et al: Tumor
necrosis factor receptor family member RANK mediates osteoclast
differentiation and activation induced by osteoprotegerin ligand.
Proc Natl Acad Sci USA. 96:3540–3545. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Virk MS, Petrigliano FA and Liu NQ:
Influence of simultaneous targeting of the bone morphogenetic
protein pathway and RANK-RANKL axis in osteolytic prostate cancer
lesion in bone. Bone. 44:160–167. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Singh AS and Figg WD: In vivo models of
prostate cancer metastasis to bone. J Urol. 174:820–826. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang M, Jiang P and Sun FX: A fluorescent
orthotopic bone metastasis model of human prostate cancer. Cancer
Res. 59:781–786. 1999.PubMed/NCBI
|
38
|
Corey E, Quinn JE, Vessella RL, et al: A
novel method of generating prostate cancer metastases from
orthotopic implants. Prostate. 56:110–114. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Krause C, Guzman A and Knaus P: Noggin.
Int J Biochem Cell Biol. 43:478–481. 2011. View Article : Google Scholar
|
40
|
Kamata T, Daar IO, Subleski M, et al:
Xenopus CRMP-2 is an early response gene to neural induction. Brain
Res Mol Brain Res. 57:201–210. 1998. View Article : Google Scholar : PubMed/NCBI
|
41
|
Feeley BT, Krenek L, Liu N, et al:
Overexpression of noggin inhibits BMP-mediated growth of osteolytic
prostate cancer lesions. Bone. 38:154–166. 2006. View Article : Google Scholar
|
42
|
Morrissey C, Brown LG, Pitts TE, et al:
Bone morphogenetic protein 7 is expressed in prostate cancer
metastases and its effects on prostate tumor cells depend on cell
phenotype and the tumor microenvironment. Neoplasia. 12:192–205.
2010.
|
43
|
Dai J, Keller J, Zhang J, et al: Bone
morphogenetic protein-6 promotes osteoblastic prostate cancer bone
metastases through adual mechanism. Cancer Res. 65:8274–8285. 2005.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Jackson MW: A potential autocrine role for
vascular endothelial growth factor in prostate cancer. Cancer Res.
62:854–859. 2002.PubMed/NCBI
|
45
|
Staton CA: Class 3 semaphorins and their
receptors in physiological and pathological angiogenesis. Biochem
Soc Trans. 39:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Miao HQ, Soker S, Feiner L, et al:
Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of
endothelial cell motility: functional competition of collapsin-1
and vascular endothelial growth factor-165. J Cell Biol.
146:233–242. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jones DH, Nakashima T, Sanchez OH, et al:
Regulation of cancer cell migration and bone metastasis by RANKL.
Nature. 440:692–696. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sottnik JL1 and Keller ET: Understanding
and targeting osteoclastic activity in prostate cancer bone
metastases. Curr Mol Med. 13:626–639. 2013. View Article : Google Scholar : PubMed/NCBI
|