1
|
Lipps HJ and Rhodes D: G-quadruplex
structures: in vivo evidence and function. Trends Cell Biol.
19:414–422. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brooks TA, Kendrick S and Hurley L: Making
sense of G-quadruplex and i-motif functions in oncogene promoters.
FEBS J. 277:3459–3469. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huppert JL: Structure, location and
interactions of G-quadruplexes. FEBS J. 277:3452–3458. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Williamson JR, Raghuraman MK and Cech TR:
Monovalent cation-induced structure of telomeric DNA: the G-quartet
model. Cell. 59:871–880. 1989. View Article : Google Scholar : PubMed/NCBI
|
5
|
Balasubramanian S, Hurley LH and Neidle S:
Targeting G-quadruplexes in gene promoters: a novel anticancer
strategy? Nat Rev Drug Discov. 10:261–275. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Eddy J and Maizels N: Conserved elements
with potential to form polymorphic G-quadruplex structures in the
first intron of human genes. Nucleic Acids Res. 36:1321–1333. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Huppert JL and Balasubramanian S:
G-quadruplexes in promoters throughout the human genome. Nucleic
Acids Res. 35:406–413. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bidzinska J, Cimino-Reale G, Zaffaroni N
and Folini M: G-quadruplex structures in the human genome as novel
therapeutic targets. Molecules. 18:12368–12395. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Brooks TA and Hurley LH: Targeting MYC
Expression through G-Quadruplexes. Genes Cancer. 1:641–649. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Palumbo SL, Ebbinghaus SW and Hurley LH:
Formation of a unique end-to-end stacked pair of G-quadruplexes in
the hTERT core promoter with implications for inhibition of
telomerase by G-quadruplex-interactive ligands. J Am Chem Soc.
131:10878–10891. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Düchler M: G-quadruplexes: targets and
tools in anticancer drug design. J Drug Target. 20:389–400.
2012.PubMed/NCBI
|
13
|
Hurley LH: Secondary DNA structures as
molecular targets for cancer therapeutics. Biochem Soc Trans.
29:692–696. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kumar P, Yadav VK, Baral A, Kumar P, Saha
D and Chowdhury S: Zinc-finger transcription factors are associated
with guanine quadruplex motifs in human, chimpanzee, mouse and rat
promoters genome-wide. Nucleic Acids Res. 39:8005–8016. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Rangan A, Fedoroff OY and Hurley LH:
Induction of duplex to G-quadruplex transition in the c-myc
promoter region by a small molecule. J Biol Chem. 276:4640–4646.
2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun D, Liu WJ, Guo K, et al: The proximal
promoter region of the human vascular endothelial growth factor
gene has aG-quadruplex structure that can be targeted by
G-quadruplex-interactive agents. Mol Cancer Ther. 7:880–889. 2008.
View Article : Google Scholar
|
17
|
Arola A and Vilar R: Stabilisation of
G-quadruplex DNA by small molecules. Curr Top Med Chem.
8:1405–1415. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Petenzi M, Verga D, Largy E, et al:
Cationic pentaheteroaryls as selective G-quadruplex ligands by
solvent-free microwave-assisted synthesis. Chemistry.
18:14487–14496. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Collie GW, Promontorio R, Hampel SM, Micco
M, Neidle S and Parkinson GN: Structural basis for telomeric
G-quadruplex targeting by naphthalene diimide ligands. J Am Chem
Soc. 134:2723–2731. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Di Antonio M, Doria F, Richter SN, et al:
Quinone methides tethered to naphthalene diimides as selective
G-quadruplex alkylating agents. J Am Chem Soc. 131:13132–13141.
2009.PubMed/NCBI
|
21
|
Doria F, Nadai M, Folini M, et al: Hybrid
ligand-alkylating agents targeting telomeric G-quadruplex
structures. Org Biomol Chem. 10:2798–2806. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gunaratnam M, de la Fuente M, Hampel SM,
et al: Targeting pancreatic cancer with a G-quadruplex ligand.
Bioorg Med Chem. 19:7151–7157. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hampel SM, Sidibe A, Gunaratnam M, Riou JF
and Neidle S: Tetrasubstituted naphthalene diimide ligands with
selectivity for telomeric G-quadruplexes and cancer cells. Bioorg
Med Chem Lett. 20:6459–6463. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nadai M, Doria F, Di Antonio M, et al:
Naphthalene diimide scaffolds with dual reversible and covalent
interaction properties towards G-quadruplex. Biochimie.
93:1328–1340. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
26
|
Greenfield NJ: Using circular dichroism
collected as a function of temperature to determine the
thermodynamics of protein unfolding and binding interactions. Nat
Protoc. 1:2527–2535. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kumar N, Basundra R and Maiti S: Elevated
polyamines induce c-MYC overexpression by perturbing quadruplex-WC
duplex equilibrium. Nucleic Acids Res. 37:3321–3331. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kumar N, Patowary A, Sivasubbu S, Petersen
M and Maiti S: Silencing c-MYC expression by targeting quadruplex
in P1 promoter using locked nucleic acid trap. Biochemistry.
47:13179–13188. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Borgognone M, Armas P and Calcaterra NB:
Cellular nucleic-acid-binding protein, a transcriptional enhancer
of c-Myc, promotes the formation of parallel G-quadruplexes.
Biochem J. 428:491–498. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Waller ZA, Sewitz SA, Hsu ST and
Balasubramanian S: A small molecule that disrupts G-quadruplex DNA
structure and enhances gene expression. J Am Chem Soc.
131:12628–12633. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang XD, Ou TM, Lu YJ, et al: Turning off
transcription of the bcl-2 gene by stabilizing the bcl-2 promoter
quadruplex with quindoline derivatives. J Med Chem. 53:4390–4398.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
McLuckie KI, Waller ZA, Sanders DA, et al:
G-quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT
expression in human gastric carcinoma cells. J Am Chem Soc.
133:2658–2663. 2011. View Article : Google Scholar
|
33
|
Hsu ST, Varnai P, Bugaut A, Reszka AP,
Neidle S and Balasubramanian S: A G-rich sequence within the c-kit
oncogene promoter forms a parallel G-quadruplex having asymmetric
G-tetrad dynamics. J Am Chem Soc. 131:13399–13409. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bejugam M, Sewitz S, Shirude PS, Rodriguez
R, Shahid R and Balasubramanian S: Trisubstituted isoalloxazines as
a new class of G-quadruplex binding ligands: small molecule
regulation of c-kit oncogene expression. J Am Chem Soc.
129:12926–12927. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rankin S, Reszka AP, Huppert J, et al:
Putative DNA quadruplex formation within the human c-kit oncogene.
J Am Chem Soc. 127:10584–10589. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dai J, Dexheimer TS, Chen D, et al: An
intramolecular G-quadruplex structure with mixed
parallel/antiparallel G-strands formed in the human BCL-2 promoter
region in solution. J Am Chem Soc. 128:1096–1098. 2006. View Article : Google Scholar
|
37
|
Dexheimer TS, Sun D and Hurley LH:
Deconvoluting the structural and drug-recognition complexity of the
G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J Am
Chem Soc. 128:5404–5415. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Orlotti NI, Cimino-Reale G, Borghini E, et
al: Autophagy acts as a safeguard mechanism against G-quadruplex
ligand-mediated DNA damage. Autophagy. 8:1185–1196. 2012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Maizels N: G4 motifs in human genes. Ann
NY Acad Sci. 1267:53–60. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
González V and Hurley LH: The c-MYC NHE
III(1): function and regulation. Annu Rev Pharmacol Toxicol.
50:111–129. 2010.PubMed/NCBI
|
41
|
Sissi C, Gatto B and Palumbo M: The
evolving world of protein-G-quadruplex recognition: a medicinal
chemist’s perspective. Biochimie. 93:1219–1230. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Biffi G, Di Antonio M, Tannahill D and
Balasubramanian S: Visualization and selective chemical targeting
of RNA G-quadruplex structures in the cytoplasm of human cells. Nat
Chem. 6:75–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Biffi G, Tannahill D, McCafferty J and
Balasubramanian S: Quantitative visualization of DNA G-quadruplex
structures in human cells. Nat Chem. 5:182–186. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tarsounas M and Tijsterman M: Genomes and
G-quadruplexes: for better or for worse. J Mol Biol. 425:4782–4789.
2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yadav VK, Abraham JK, Mani P, Kulshrestha
R and Chowdhury S: QuadBase: genome-wide database of G4 DNA -
occurrence and conservation in human, chimpanzee, mouse and rat
promoters and 146 microbes. Nucleic Acids Res. 36:D381–D385. 2008.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Kikin O, D’Antonio L and Bagga PS: QGRS
Mapper: a web-based server for predicting G-quadruplexes in
nucleotide sequences. Nucleic Acids Res. 34:W676–W682. 2006.
View Article : Google Scholar : PubMed/NCBI
|