1
|
Spanswick VJ, Lowe HL, Newton C, et al:
Evidence for different mechanisms of ‘unhooking’ for melphalan and
cisplatin-induced DNA interstrand cross-links in vitro and in
clinical acquired resistant tumour samples. BMC Cancer. 12:4362012.
View Article : Google Scholar
|
2
|
Bouwman P and Jonker J: The effects of
deregulated DNA damage signalling on cancer chemotherapy response
and resistance. Nat Rev Cancer. 12:587–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Altieri F, Grillo C, Maceroni M, et al:
DNA damage and repair: from molecular mechanisms to health
implications. Antioxid Redox Signal. 10:891–937. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hlavin EM, Smeaton MB and Miller PS:
Initiation of DNA interstrand cross-link repair in mammalian cells.
Environ Mol Mutagen. 51:604–624. 2010.PubMed/NCBI
|
5
|
Bessho T: Induction of DNA
replication-mediated double strand breaks by psoralen DNA
interstrandcross-links. J Biol Chem. 278:5250–5254. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sczepanski JT, Jacobs AC, Van Houten B, et
al: Double-strand break formation during nucleotide excision repair
of a DNA interstrand cross-link. Biochemistry. 48:7565–7567. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim H and D’Andrea AD: Regulation of DNA
cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev.
26:1393–1408. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mouw KW and D’Andrea AD: Crosstalk between
the nucleotide excision repair and Fanconi anemia/BRCA pathways.
DNA Repair. 19:130–134. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Levitus M, Joenje H and de Winter JP: The
Fanconi anemia pathway of genomic maintenance. Cell Oncol. 28:3–29.
2006.PubMed/NCBI
|
10
|
Cohn MA and D’Andrea AD: Chromatin
recruitment of DNA repair proteins: lessons from the fanconi anemia
and double-strand break repair pathways. Mol Cell. 32:306–312.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rodríguez A, Sosa D, Torres L, et al: A
Boolean network model of the FA/BRCA pathway. Bioinformatics.
28:858–866. 2012.
|
12
|
Karanja KK, Cox SW, Duxin JP, et al: DNA2
and EXO1 in replication-coupled, homology-directed repair and in
the interplay between HDR and the FA/BRCA network. Cell Cycle.
11:3983–3996. 2012. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Stecklein SR and Jensen RA: Identifying
and exploiting defects in the Fanconi anemia/BRCA pathway in
oncology. Transl Res. 160:178–197. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jacquemont C, Simon JA, D’Andrea AD, et
al: Non-specific chemical inhibition of the Fanconi anemia pathway
sensitizes cancer cells to cisplatin. Mol Cancer. 11:262012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Chirnomas D, Taniguchi T, de la Vega M, et
al: Chemosensitization to cisplatin by inhibitors of the Fanconi
anemia/BRCA pathway. Mol Cancer Ther. 5:952–961. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Taniguchi T and D’Andrea AD: Molecular
pathogenesis of Fanconi anemia: recent progress. Blood.
107:4223–4233. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mori R, Yoshida K, Tanahashi T, et al:
Decreased FANCJ caused by 5FU contributes to the increased
sensitivity to oxaliplatin in gastric cancer cells. Gastric Cancer.
16:345–354. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Deans AJ and West SC: DNA interstrand
crosslink repair and cancer. Nat Rev Cancer. 11:467–480. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hegi ME, Sciuscio D, Murat A, et al:
Epigenetic deregulation of DNA repair and its potential for
therapy. Clin Cancer Res. 15:5026–5031. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Palagyi A, Neveling K, Plinninger U, et
al: Genetic inactivation of the Fanconi anemia gene FANCC
identified in the hepatocellular carcinoma cell line HuH-7 confers
sensitivity towards DNA-interstrand crosslinking agents. Mol
Cancer. 9:1272010. View Article : Google Scholar
|
21
|
Burkitt K and Ljungman M: Phenylbutyrate
interferes with the Fanconi anemia and BRCA pathway and sensitizes
head and neck cancer cells to cisplatin. Mol Cancer. 7:242008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kondo N, Takahashi A, Mori E, et al:
FANCD1/BRCA2 plays predominant role in the repair of DNA damage
induced by ACNU or TMZ. PLoS One. 6:e196592011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yarde DN, Oliveira V, Mathews L, et al:
Targeting the Fanconi anemia/BRCA pathway circumvents drug
resistance in multiple myeloma. Cancer Res. 69:9367–9375. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Adhikari S, Choudhury S, Mitra PS, et al:
Targeting base excision repair for chemosensitization. Anticancer
Agents Med Chem. 8:351–357. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
David KK, Andrabi SA, Dawson TM, et al:
Parthanatos, a messenger of death. Front Biosci. 14:1116–1128.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang Y, Dawson VL and Dawson TM:
Poly(ADP-ribose) signals to mitochondrial AIF: a key event in
parthanatos. Exp Neurol. 218:193–202. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bryant HE, Petermann E, Schultz N, et al:
PARP is activated at stalled forks to mediate Mre11-dependent
replication restart and recombination. EMBO J. 28:2601–2615. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Krishnakumar R and Kraus WL: The PARP side
of the nucleus: molecular actions, physiological outcomes, and
clinical targets. Mol Cell. 39:8–24. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Węsierska-Gądek J, Zulehner N, Ferk F, et
al: PARP inhibition potentiates the cytotoxic activity of C-1305, a
selective inhibitor of topoisomerase II, in human BRCA1-positive
breast cancer cells. Biochem Pharmacol. 84:1318–1331.
2012.PubMed/NCBI
|
30
|
Lavarone E, Puppin C, Passon N, et al: The
PARP inhibitor PJ34 modifies proliferation, NIS expression and
epigenetic marks in thyroid cancer cell lines. Mol Cell Endocrinol.
365:1–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Davidson D, Wang Y, Aloyz R, et al: The
PARP inhibitor ABT-888 synergizes irinotecan treatment of colon
cancer cell lines. Invest New Drugs. 31:461–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cheng H, Zhang Z, Borczuk A, et al: PARP
inhibition selectively increases sensitivity to cisplatin in
ERCC1-low non-small cell lung cancer cells. Carcinogenesis.
34:739–749. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cavallo F, Graziani G, Antinozzi C, et al:
Reduced proficiency in homologous recombination underlies the high
sensitivity of embryonal carcinoma testicular germ cell tumors to
cisplatin and poly (ADP-ribose) polymerase inhibition. PLoS One.
7:e515632012. View Article : Google Scholar
|
34
|
Donawho CK, Luo Y, Luo Y, et al: ABT-888,
an orally active poly(ADP-ribose) polymerase inhibitor that
potentiates DNA-damaging agents in preclinical tumor models. Clin
Cancer Res. 13:2728–2737. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ahel I, Ahel D, Matsusaka T, et al:
Poly(ADP-ribose)-binding zinc finger motifs in DNA
repair/checkpoint proteins. Nature. 451:81–85. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Pyriochou A, Olah G, Deitch EA, et al:
Inhibition of angiogenesis by the poly(ADP-ribose) polymerase
inhibitor PJ-34. Int J Mol Med. 22:113–118. 2008.PubMed/NCBI
|
37
|
Xiao H, Xiao Q, Zhang K, et al: Reversal
of multidrug resistance by curcumin through FA/BRCA pathway in
multiple myeloma cell line MOLP-2/R. Ann Hematol. 89:399–404. 2010.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Vinod BS, Maliekal TT and Anto RJ:
Phytochemicals as chemosensitizers: from molecular mechanism to
clinical significance. Antioxid Redox Signal. 18:1307–1348. 2013.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Tomicic MT and Kaina B: Topoisomerase
degradation, DSB repair, p53 and IAPs in cancer cell resistance to
camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta.
1835:11–27. 2013.PubMed/NCBI
|
40
|
Liu X, Luo X, Shi Y, et al: Poly
(ADP-ribose) polymerase activity regulates apoptosis in HeLa cells
after alkylating DNA damage. Cancer Biol Ther. 7:934–941. 2008.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Gambi N, Tramontano F and Quesada P:
Poly(ADPR) polymerase inhibition and apoptosis induction in
cDDP-treated human carcinoma cell lines. Biochem Pharmacol.
75:2356–2363. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang YG, Cortes U, Patnaik S, et al:
Ablation of PARP-1 does not interfere with the repair of DNA
double-strand breaks, but compromises the reactivation of stalled
replication forks. Oncogene. 23:3872–3882. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mah LJ, Orlowski C, Ververis K, et al:
Utility of γH2AX as a molecular marker of DNA double-strand breaks
in nuclear medicine: applications to radionuclide therapy employing
auger electron-emitting isotopes. Curr Radiopharm. 4:59–67. 2011.
View Article : Google Scholar
|
44
|
Richardson C: RAD51, genomic stability,
and tumorigenesis. Cancer Lett. 218:127–139. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Klein HL: The consequences of Rad51
overexpression for normal and tumor cells. DNA Repair. 7:686–693.
2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Qiao GB, Wu YL, Yang XN, et al: High-level
expression of Rad51 is an independent prognostic marker of survival
in non-small-cell lung cancer patients. Br J Cancer. 93:137–143.
2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Luoto KR, Meng AX, Wasylishen AR, et al:
Tumor cell kill by c-MYC depletion: role of MYC-regulated genes
that control DNA double-strand break repair. Cancer Res.
70:8748–8759. 2010. View Article : Google Scholar : PubMed/NCBI
|