1
|
Aitken A: 14-3-3 proteins: a historic
overview. Semin Cancer Biol. 16:162–172. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dougherty MK and Morrison DK: Unlocking
the code of 14-3-3. J Cell Sci. 117:1875–1884. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hermeking H: The 14-3-3 cancer connection.
Nat Rev Cancer. 3:931–943. 2003. View
Article : Google Scholar
|
4
|
Hermeking H and Benzinger A: 14-3-3
proteins in cell cycle regulation. Semin Cancer Biol. 16:183–192.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang Y, Karas M, Zhao H, Yakar S and
LeRoith D: 14-3-3-sigma mediation of cell cycle progression is
p53-independent in response to insulin-like growth factor-I
receptor activation. J Biol Chem. 279:34353–34360. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kasahara K, Goto H, Enomoto M, Tomono Y,
Kiyono T and Inagaki M: 14-3-3gamma mediates Cdc25A proteolysis to
block premature mitotic entry after DNA damage. EMBO J.
29:2802–2812. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Du J, Chen L, Luo X, Shen Y, Dou Z, Shen
J, Cheng L, Chen Y, Li C, Wang H and Yao X: 14-3-3zeta cooperates
with phosphorylated Plk1 and is required for correct cytokinesis.
Front Biosci (Schol Ed). 4:639–650. 2012. View Article : Google Scholar
|
8
|
Masters SC and Fu H: 14-3-3 proteins
mediate an essential antiapoptotic signal. J Biol Chem.
276:45193–45200. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mhawech P: 14-3-3 proteins - an update.
Cell Res. 15:228–236. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yan Y, Xu Y, Gao YY, Zong ZH, Zhang Q, Li
C and Wang HQ: Implication of 14-3-3epsilon and 14-3-3theta/tau in
proteasome inhibition-induced apoptosis of glioma cells. Cancer
Sci. 104:55–61. 2005. View Article : Google Scholar
|
11
|
Han DC, Rodriguez LG and Guan JL:
Identification of a novel interaction between integrin beta1 and
14-3-3beta. Oncogene. 20:346–357. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rodriguez LG and Guan JL: 14-3-3
regulation of cell spreading and migration requires a functional
amphipathic groove. J Cell Physiol. 202:285–294. 2005. View Article : Google Scholar
|
13
|
Luk SC, Ngai SM, Tsui SK, Fung KP, Lee CY
and Waye MM: In vivo and in vitro association of 14-3-3 epsilon
isoform with calmodulin: implication for signal transduction and
cell proliferation. J Cell Biochem. 73:31–35. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Matitau AE, Gabor TV, Gill RM and Scheid
MP: MEKK2 association with 14-3-3 regulates activation of c-Jun
N-terminal kinase. J Biol Chem. 288:28293–28302. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Radhakrishnan VM, Putnam CW and Martinez
JD: Activation of phosphatidylinositol 3-kinase (PI3K) and
mitogen-activated protein kinase (MAPK) signaling and the
consequent induction of transformation by overexpressed 14-3-3gamma
protein require specific amino acids within 14-3-3gamma N-terminal
variable region II. J Biol Chem. 287:43300–43311. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Qi W, Liu X, Qiao D and Martinez JD:
Isoform-specific expression of 14-3-3 proteins in human lung cancer
tissues. Int J Cancer. 113:359–363. 2005. View Article : Google Scholar
|
17
|
Fan T, Li R, Todd NW, Qiu Q, Fang HB, Wang
H, Shen J, Zhao RY, Caraway NP, Katz RL, Stass SA and Jiang F:
Up-regulation of 14-3-3zeta in lung cancer and its implication as
prognostic and therapeutic target. Cancer Res. 67:7901–7906. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Titus MA, Tan JA, Gregory CW, Ford OH,
Subramanian RR, Fu H, Wilson EM, Mohler JL and French FS: 14-3-3η
amplifies androgen receptor actions in prostate cancer. Clin Cancer
Res. 15:7571–7581. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Han B, Xie H, Chen Q and Zhang JT:
Sensitizing hormone-refractory prostate cancer cells to drug
treatment by targeting 14-3-3sigma. Mol Cancer Ther. 5:903–912.
2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Z, Dong Z, Myer D, Yip-Schneider M, Liu
J, Cui P, Schmidt CM and Zhang JT: Role of 14-3-3sigma in poor
prognosis and in radiation and drug resistance of human pancreatic
cancers. BMC Cancer. 10:5982010. View Article : Google Scholar
|
21
|
Naidoo K, Jones R, Dmitrovic B, Wijesuriya
N, Kocher H, Hart IR and Crnogorac-Jurcevic T: Proteome of
formalin-fixed paraffin-embedded pancreatic ductal adenocarcinoma
and lymph node metastases. J Pathol. 226:756–763. 2012. View Article : Google Scholar
|
22
|
Nishimura Y, Komatsu S, Ichikawa D, Nagata
H, Hirajima S, Takeshita H, Kawaguchi T, Arita T, Konishi H,
Kashimoto K, Shiozaki A, Fujiwara H, Okamoto K, Tsuda H and Otsuji
E: Overexpression of YWHAZ relates to tumor cell proliferation and
malignant outcome of gastric carcinoma. Br J Cancer. 108:1324–1331.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
O’Dwyer D, Ralton LD, O’Shea A and Murray
GI: The proteomics of colorectal cancer: identification of a
protein signature associated with prognosis. PLoS One.
6:e277182011. View Article : Google Scholar
|
24
|
Yang X, Cao W, Zhang L, Zhang W, Zhang X
and Lin H: Targeting 14-3-3zeta in cancer therapy. Cancer Gene
Ther. 19:153–159. 2012. View Article : Google Scholar
|
25
|
Kaufmann WK and Paules RS: DNA damage and
cell cycle checkpoints. FASEB J. 10:238–247. 1996.PubMed/NCBI
|
26
|
Mendoza-Rodriguez CA and Cerbon MA: Tumor
suppressor gene p53: mechanisms of action in cell proliferation and
death. Rev Invest Clin. 53:266–273. 2001.(In Spanish).
|
27
|
Yang X, Taylor L and Polgar P: p53
down-regulates human brady-kinin B1 receptor gene expression. J
Cell Biochem. 82:38–45. 2001. View
Article : Google Scholar : PubMed/NCBI
|
28
|
el-Deiry WS: Regulation of p53 downstream
genes. Semin Cancer Biol. 8:345–357. 1998. View Article : Google Scholar
|
29
|
Hermeking H, Lengauer C, Polyak K, He TC,
Zhang L, Thiagalingam S, Kinzler KW and Vogelstein B: 14-3-3 sigma
is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1:3–11.
1997. View Article : Google Scholar
|
30
|
Laronga C, Yang HY, Neal C and Lee MH:
Association of the cyclin-dependent kinases and 14-3-3 sigma
negatively regulates cell cycle progression. J Biol Chem.
275:23106–23112. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang HY, Wen YY, Chen CH, Lozano G and Lee
MH: 14-3-3 sigma positively regulates p53 and suppresses tumor
growth. Mol Cell Biol. 23:7096–7107. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rajagopalan S, Sade RS, Townsley FM and
Fersht AR: Mechanistic differences in the transcriptional
activation of p53 by 14-3-3 isoforms. Nucleic Acids Res.
38:893–906. 2010. View Article : Google Scholar :
|
33
|
Stavridi ES, Chehab NH, Malikzay A and
Halazonetis TD: Substitutions that compromise the ionizing
radiation-induced association of p53 with 14-3-3 proteins also
compromise the ability of p53 to induce cell cycle arrest. Cancer
Res. 61:7030–7033. 2001.PubMed/NCBI
|
34
|
Qi W, Liu X, Chen W, Li Q and Martinez JD:
Overexpression of 14-3-3gamma causes polyploidization in H322 lung
cancer cells. Mol Carcinog. 46:847–856. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Radhakrishnan VM, Putnam CW, Qi W and
Martinez JD: P53 suppresses expression of the 14-3-3 gamma
oncogene. BMC Cancer. 11:3782011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Qiao D, Gaitonde SV, Qi W and Martinez JD:
Deoxycholic acid suppresses p53 by stimulating proteasome-mediated
p53 protein degradation. Carcinogenesis. 22:957–964. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Radhakrishnan VM and Martinez JD:
14-3-3gamma induces oncogenic transformation by stimulating MAP
kinase and PI3K signaling. PLoS One. 5:e114332010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Golubovskaya VM and Cance WG: Targeting
the p53 pathway. Surg Oncol Clin N Am. 22:747–764. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bhawal UK, Sugiyama M, Nomura Y, Kuniyasu
H and Tsukinoki K: Loss of 14-3-3 sigma protein expression and
presence of human papillomavirus type 16 E6 in oral squamous cell
carcinoma. Arch Otolaryngol Head Neck Surg. 134:1055–1059. 2008.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ostergaard M, Rasmussen HH, Nielsen HV,
Vorum H, Orntoft TF, Wolf H and Celis JE: Proteome profiling of
bladder squamous cell carcinomas: identification of markers that
define their degree of differentiation. Cancer Res. 57:4111–4117.
1997.PubMed/NCBI
|
41
|
Ferguson AT, Evron E, Umbricht CB, Pandita
TK, Chan TA, Hermeking H, Marks JR, Lambers AR, Futreal PA,
Stampfer MR and Sukumar S: High frequency of hypermethylation at
the 14-3-3 sigma locus leads to gene silencing in breast cancer.
Proc Natl Acad Sci USA. 97:6049–6054. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Suzuki H, Itoh F, Toyota M, Kikuchi T,
Kakiuchi H and Imai K: Inactivation of the 14-3-3 sigma gene is
associated with 5′ CpG island hypermethylation in human cancers.
Cancer Res. 60:4353–4357. 2000.PubMed/NCBI
|
43
|
Iwata N, Yamamoto H, Sasaki S, Itoh F,
Suzuki H, Kikuchi T, Kaneto H, Iku S, Ozeki I, Karino Y, Satoh T,
Toyota J, Satoh M, Endo T and Imai K: Frequent hypermethylation of
CpG islands and loss of expression of the 14-3-3 sigma gene in
human hepatocellular carcinoma. Oncogene. 19:5298–5302. 2000.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Ichimura T, Taoka M, Shoji I, Kato H, Sato
T, Hatakeyama S, Isobe T and Hachiya N: 14-3-3 proteins sequester a
pool of soluble TRIM32 ubiquitin ligase to repress
autoubiquitylation and cytoplasmic body formation. J Cell Sci.
126:2014–2026. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sato T, Maekawa S, Yasuda S, Domeki Y,
Sueyoshi K, Fujiwara M, Fukao Y, Goto DB and Yamaguchi J:
Identification of 14-3-3 proteins as a target of ATL31 ubiquitin
ligase, a regulator of the C/N response in Arabidopsis. Plant J.
68:137–146. 2011. View Article : Google Scholar : PubMed/NCBI
|