1
|
Siegel R, Ma J, Zou Z, et al: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tiwari RC, Ghosh K, Jemal A, et al: A new
method of predicting US and state-level cancer mortality counts for
the current calendar year. CA Cancer J Clin. 54:30–40. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Ahmed I, Ahmed Tipu S and Ishtiaq S:
Malignant mesothelioma. Pak J Med Sci. 29:1433–1438. 2013.
|
4
|
Linton A, Cheng YY, Griggs K, et al: An
RNAi-based screen reveals PLK1, CDK1 and NDC80 as potential
therapeutic targets in malignant pleural mesothelioma. Br J Cancer.
110:510–519. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cunha P, Luz Z, Seves I, et al: Malignant
peritoneal mesothelioma - diagnostic and therapeutic difficulties.
Acta Med Port. 15:383–386. 2002.(In Portuguese).
|
6
|
de Pangher Manzini V: Malignant peritoneal
mesothelioma. Tumori. 91:1–5. 2005.PubMed/NCBI
|
7
|
Kusamura S, Deraco M, Baratti D, et al:
Cytoreductive surgery followed by intra peritoneal hyperthermic
perfusion in the treatment of peritoneal surface malignancies:
morbidity and mortality with closed abdomen technique. J Exp Clin
Cancer Res. 22:207–212. 2003.
|
8
|
Rodriguez D, Cheung MC, Housri N, et al:
Malignant abdominal mesothelioma: defining the role of surgery. J
Surg Oncol. 99:51–57. 2009. View Article : Google Scholar
|
9
|
Yuan X, Li D, Zhao H, et al: Licochalcone
A-induced human bladder cancer T24 cells apoptosis triggered by
mitochondria dysfunction and endoplasmic reticulum stress. Biomed
Res Int. 2013:4742722013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yao K, Chen H, Lee MH, et al: Licochalcone
A, a natural inhibitor of c-Jun N-terminal kinase 1. Cancer Prev
Res. 7:139–149. 2014. View Article : Google Scholar
|
11
|
Kim JK, Shin EK, Park JH, et al: Antitumor
and antimetastatic effects of licochalcone A in mouse models. J Mol
Med. 88:829–838. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xiao XY, Hao M, Yang XY, et al:
Licochalcone A inhibits growth of gastric cancer cells by arresting
cell cycle progression and inducing apoptosis. Cancer Lett.
302:69–75. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yo YT, Shieh GS, Hsu KF, et al: Licorice
and licochalcone-A induce autophagy in LNCaP prostate cancer cells
by suppression of Bcl-2 expression and the mTOR pathway. J Agric
Food Chem. 57:8266–8273. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cui Y, Ao M, Li W, et al:
Anti-inflammatory activity of licochalcone A isolated from
Glycyrrhiza inflata. Z Naturforsch C. 63:361–365. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Funakoshi-Tago M, Tanabe S, Tago K, et al:
Licochalcone A potently inhibits tumor necrosis factor
alpha-induced nuclear factor-kappaB activation through the direct
inhibition of IkappaB kinase complex activation. Mol Pharmacol.
76:745–753. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li L and Davie JR: The role of Sp1 and Sp3
in normal and cancer cell biology. Ann Anat. 192:275–283. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Safe S and Abdelrahim M: Sp transcription
factor family and its role in cancer. Eur J Cancer. 41:2438–2448.
2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Courey AJ and Tjian R: Analysis of Sp1 in
vivo reveals multiple transcriptional domains, including a novel
glutamine-rich activation motif. Cell. 55:887–898. 1988. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chuang JY, Wu CH, Lai MD, et al:
Overexpression of Sp1 leads to p53-dependent apoptosis in cancer
cells. Int J Cancer. 125:2066–2076. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yoon G, Jung YD and Cheon SH: Cytotoxic
allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem
Pharm Bull. 53:694–695. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fu Y, Chen J, Li YJ, et al: Antioxidant
and anti-inflammatory activities of six flavonoids separated from
licorice. Food Chem. 141:1063–1071. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Goldberg JL, Zanella CL, Janssen YM, et
al: Novel cell imaging techniques show induction of apoptosis and
proliferation in mesothelial cells by asbestos. Am J Respir Cell
Mol Biol. 17:265–271. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bouwman P and Philipsen S: Regulation of
the activity of Sp1-related transcription factors. Mol Cell
Endocrinol. 195:27–38. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen Q, Liu XF and Zheng PS: Grape seed
proanthocyanidins (GSPs) inhibit the growth of cervical cancer by
inducing apoptosis mediated by the mitochondrial pathway. PLoS One.
9:e1070452014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Condamine T, Kumar V, Ramachandran IR, et
al: ER stress regulates myeloid-derived suppressor cell fate
through TRAIL-R-mediated apoptosis. J Clin Invest. 124:2626–2639.
2014. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Gultekin KE, Yurdakonar MK, Yaman E, et
al: Effects of cisplatin and panobinostat on human mesothelial
(Met-5A) and malignant pleural mesothelioma (MSTO-211H) cells.
Genet Mol Res. 12:5405–5413. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee YJ, Park IS, Lee YJ, et al:
Resveratrol contributes to chemo-sensitivity of malignant
mesothelioma cells with activation of p53. Food Chem Toxicol.
63:153–160. 2013. View Article : Google Scholar
|
28
|
Tsai JP, Hsiao PC, Yang SF, et al:
Licochalcone A suppresses migration and invasion of human
hepatocellular carcinoma cells through downregulation of MKK4/JNK
via NF-kappaB mediated urokinase plasminogen activator expression.
PLoS One. 9:e865372014. View Article : Google Scholar
|
29
|
Park HG, Bak EJ, Woo GH, et al:
Licochalcone E has an antidiabetic effect. J Nutr Biochem.
23:759–767. 2012. View Article : Google Scholar
|
30
|
Chang SF, Chang CA, Lee DY, et al: Tumor
cell cycle arrest induced by shear stress: Roles of integrins and
Smad. Proc Natl Acad Sci USA. 105:3927–3932. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li H, Zhu H, Xu CJ, et al: Cleavage of BID
by caspase 8 mediates the mitochondrial damage in the Fas pathway
of apoptosis. Cell. 94:491–501. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kaufmann T, Strasser A and Jost PJ: Fas
death receptor signalling: roles of Bid and XIAP. Cell Death
Differ. 19:42–50. 2012. View Article : Google Scholar :
|
33
|
Teng CL, Han SM, Wu WC, et al: Mechanistic
aspects of lauryl gallate-induced differentiation and apoptosis in
human acute myeloid leukemia cells. Food Chem Toxicol. 71:197–206.
2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Law CK, Kwok HH, Poon PY, et al:
Ginsenoside compound K induces apoptosis in nasopharyngeal
carcinoma cells via activation of apoptosis-inducing factor. Chin
Med. 9:112014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fossati S, Ghiso J and Rostagno A: TRAIL
death receptors DR4 and DR5 mediate cerebral microvascular
endothelial cell apoptosis induced by oligomeric Alzheimer’s Abeta.
Cell Death Dis. 3:e3212012. View Article : Google Scholar
|
36
|
Haase G, Pettmann B, Raoul C, et al:
Signaling by death receptors in the nervous system. Curr Opin
Neurobiol. 18:284–291. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wilson NS, Dixit V and Ashkenazi A: Death
receptor signal transducers: nodes of coordination in immune
signaling networks. Nat Immunol. 10:348–355. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rizzardi C, Leocata P, Ventura L, et al:
Apoptosis-related factors (TRAIL, DR4, DR5, DcR1, DcR2, apoptotic
cells) and proliferative activity in ameloblastomas. Anticancer
Res. 29:1137–1142. 2009.PubMed/NCBI
|
39
|
Almasan A and Ashkenazi A: Apo2L/TRAIL:
apoptosis signaling, biology and potential for cancer therapy.
Cytokine Growth Factor Rev. 14:337–348. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Martin SJ and Green DR: Protease
activation during apoptosis: death by a thousand cuts? Cell.
82:349–352. 1995. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jin Z and El-Deiry WS: Overview of cell
death signaling pathways. Cancer Biol Ther. 4:139–163. 2005.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Kim EJ, Lee YJ, Shin HK, et al: Induction
of apoptosis by the aqueous extract of Rubus coreanum in HT-29
human colon cancer cells. Nutrition. 21:1141–1148. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Oliver FJ, de la Rubia G, Rolli V, et al:
Importance of poly(ADP-ribose) polymerase and its cleavage in
apoptosis. Lesson from an uncleavable mutant. J Biol Chem.
273:33533–33539. 1998. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wong WW and Puthalakath H: Bcl-2 family
proteins: the sentinels of the mitochondrial apoptosis pathway.
IUBMB Life. 60:390–397. 2008. View
Article : Google Scholar : PubMed/NCBI
|
45
|
El-Hamoly T, Hegedus C, Lakatos P, et al:
Activation of poly(ADP-ribose) polymerase-1 delays wound healing by
regulating keratinocyte migration and production of inflammatory
mediators. Mol Med. 20:363–371. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Toth-Zsamboki E, Horvath E, Vargova K, et
al: Activation of poly(ADP-ribose) polymerase by myocardial
ischemia and coronary reperfusion in human circulating leukocytes.
Mol Med. 12:221–228. 2006. View Article : Google Scholar
|