1
|
Dela Cruz CS, Tanoue LT and Matthay RA:
Lung cancer: Epidemiology, etiology, and prevention. Clin Chest
Med. 32:605–644. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Peters BG: An overview of chemotherapy
toxicities. Top Hosp Pharm Manage. 14:59–88. 1994.PubMed/NCBI
|
3
|
Cassileth BR and Vickers AJ: Complementary
and alternative therapies. Urol Clin North Am. 30:369–376. 2003.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Barnes PM, Bloom B and Nahin RL:
Complementary and alternative medicine use among adults and
children: United States, 2007. Natl Health Stat Rep. 12:1–23.
2008.
|
5
|
Johannessen H, von Bornemann Hjelmborg J,
Pasquarelli E, Fiorentini G, Di Costanzos F and Miccinesi G:
Prevalence in the use of complementary medicine among cancer
patients in Tuscany, Italy. Tumori. 94:406–410. 2008.PubMed/NCBI
|
6
|
Rossi E, Vita A, Baccetti S, Di Stefano M,
Voller F and Zanobini A: Complementary and alternative medicine for
cancer patients: Results of the EPAAC survey on integrative
oncology centres in Europe. Support Care Cancer. 23:1795–1806.
2015. View Article : Google Scholar
|
7
|
Flinn JE: Bromium in acute lymphatic
leukemia. J Am Inst Homeopath. 58:213–214. 1965.PubMed/NCBI
|
8
|
Gruchmann W: Arsenic: Destroyer and
healer; a contribution to the management of carcinoma. Hippokrates.
27:444–445. 1956.(In German). PubMed/NCBI
|
9
|
Saha S, Hossain DM, Mukherjee S, Mohanty
S, Mazumdar M, Mukherjee S, Ghosh UK, Nayek C, Raveendar C, Khurana
A, et al: Calcarea carbonica induces apoptosis in cancer cells in
p53-dependent manner via an immuno-modulatory circuit. BMC
Complement Altern Med. 13:2302013. View Article : Google Scholar : PubMed/NCBI
|
10
|
MacLaughlin BW, Gutsmuths B, Pretner E,
Jonas WB, Ives J, Kulawardane DV and Amri H: Effects of homeopathic
preparations on human prostate cancer growth in cellular and animal
models. Integr Cancer Ther. 5:362–372. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pathak S, Kumar Das J, Jyoti Biswas S and
Khuda-Bukhsh AR: Protective potentials of a potentized homeopathic
drug, Lycopodium-30, in ameliorating azo dye induced
hepatocarcinogenesis in mice. Mol Cell Biochem. 285:121–131. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Frenkel M, Mishra BM, Sen S, Yang P,
Pawlus A, Vence L, Leblanc A, Cohen L and Banerji P and Banerji P:
Cytotoxic effects of ultra-diluted remedies on breast cancer cells.
Int J Oncol. 36:395–403. 2010.PubMed/NCBI
|
13
|
Saha S, Bhattacharjee P, Mukherjee S,
Mazumdar M, Chakraborty S, Khurana A, Nayak D, Manchanda R,
Chakrabarty R, Das T, et al: Contribution of the ROS-p53 feedback
loop in thuja-induced apoptosis of mammary epithelial carcinoma
cells. Oncol Rep. 31:1589–1598. 2014.PubMed/NCBI
|
14
|
Sikdar S, Kumar Saha S and Rahman
Khuda-Bukhsh A: Relative apoptosis-inducing potential of
homeopathic condurango 6C and 30C in H460 lung cancer cells in
vitro: Apoptosis-induction by homeopathic Condurango in H460 cells.
J Pharmacopuncture. 17:59–69. 2014. View Article : Google Scholar
|
15
|
Parcell S: Sulfur in human nutrition and
applications in medicine. Altern Med Rev. 7:22–44. 2002.PubMed/NCBI
|
16
|
Sobolewska D, Podolak I and Makowska-Wąs
J: Allium ursinum: Botanical, phytochemical and pharmacological
overview. Phytochem Rev. 14:81–97. 2015. View Article : Google Scholar :
|
17
|
Melino S, Sabelli R and Paci M: Allyl
sulfur compounds and cellular detoxification system: Effects and
perspectives in cancer therapy. Amino Acids. 41:103–112. 2011.
View Article : Google Scholar
|
18
|
|
19
|
Milner JA: Mechanisms by which garlic and
allyl sulfur compounds suppress carcinogen bioactivation. Garlic
and carcinogenesis. Adv Exp Med Biol. 492:69–81. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mikaili P, Maadirad S, Moloudizargari M,
Aghajanshakeri S and Sarahroodi S: Therapeutic uses and
pharmacological properties of garlic, shallot, and their
biologically active compounds. Iran J Basic Med Sci. 16:1031–1048.
2013.
|
21
|
Koike S, Ogasawara Y, Shibuya N, Kimura H
and Ishii K: Polysulfide exerts a protective effect against
cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling
in neuroblastoma cells. FEBS Lett. 587:3548–3555. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Matias AC, Manieri TM, Cipriano SS,
Carioni VM, Nomura CS, Machado CM and Cerchiaro G:
Diethyldithiocarbamate induces apoptosis in neuroblastoma cells by
raising the intracellular copper level, triggering cytochrome c
release and caspase activation. Toxicol In Vitro. 27:349–357. 2013.
View Article : Google Scholar
|
23
|
Lee J, Lee HJ, Park JD, Lee SK, Lee SI,
Lim HD, Lee YM, Yun YG, Jeon BH, Ree IS, et al: Anti-cancer
activity of highly purified sulfur in immortalized and malignant
human oral keratinocytes. Toxicol In Vitro. 22:87–95. 2008.
View Article : Google Scholar
|
24
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Baud V and Karin M: Is NF-kappaB a good
target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov.
8:33–40. 2009. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Ryan KM: p53 and autophagy in cancer:
Guardian of the genome meets guardian of the proteome. Eur J
Cancer. 47:44–50. 2011. View Article : Google Scholar
|
27
|
Sen GS, Mohanty S, Hossain DMS,
Bhattacharyya S, Banerjee S, Chakraborty J, Saha S, Ray P,
Bhattacharjee P, Mandal D, et al: Curcumin enhances the efficacy of
chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of
p53–p300 in breast cancer. J Biol Chem. 286:42232–42247. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Mohanty S, Saha S, Md S Hossain D,
Adhikary A, Mukherjee S, Manna A, Chakraborty S, Mazumdar M, Ray P,
Das K, et al: ROS-PIASγ cross talk channelizes ATM signaling from
resistance to apoptosis during chemosensitization of resistant
tumors. Cell Death Dis. 5:e10212014. View Article : Google Scholar
|
29
|
Brown CJ, Lain S, Verma CS, Fersht AR and
Lane DP: Awakening guardian angels: Drugging the p53 pathway. Nat
Rev Cancer. 9:862–873. 2009. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Saha B, Adhikary A, Ray P, Saha S,
Chakraborty S, Mohanty S, Das K, Mukherjee S, Mazumdar M, Lahiri L,
et al: Restoration of tumor suppressor p53 by differentially
regulating pro- and anti-p53 networks in HPV-18-infected cervical
cancer cells. Oncogene. 31:173–186. 2012. View Article : Google Scholar
|
31
|
Lahiry L, Saha B, Chak raborty J,
Bhattacharyya S, Chattopadhyay S, Banerjee S, Choudhuri T, Mandal
D, Bhattacharyya A, Sa G, et al: Contribution of p53-mediated Bax
transactivation in theaflavin-induced mammary epithelial carcinoma
cell apoptosis. Apoptosis. 13:771–781. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim DS, Park SS, Nam BH, Kim IH and Kim
SY: Reversal of drug resistance in breast cancer cells by
transglutaminase 2 inhibition and nuclear factor-kappaB
inactivation. Cancer Res. 66:10936–10943. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bassères DS and Baldwin AS: Nuclear
factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic
initiation and progression. Oncogene. 25:6817–6830. 2006.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin Y, Bai L, Chen W and Xu S: The
NF-kappaB activation pathways, emerging molecular targets for
cancer prevention and therapy. Expert Opin Ther Targets. 14:45–55.
2010. View Article : Google Scholar
|
35
|
Schneider G, Henrich A, Greiner G, Wolf V,
Lovas A, Wieczorek M, Wagner T, Reichardt S, von Werder A, Schmid
RM, et al: Cross talk between stimulated NF-kappaB and the tumor
suppressor p53. Oncogene. 29:2795–2806. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Adhikary A, Chakraborty S, Mazumdar M,
Ghosh S, Mukherjee S, Manna A, Mohanty S, Nakka KK, Joshi S, De A,
et al: Inhibition of epithelial to mesenchymal transition by
E-cadherin up-regulation via repression of slug transcription and
inhibition of E-cadherin degradation: Dual role of scaffold/ matrix
attachment region-binding protein 1 (SMAR1) in breast cancer cells.
J Biol Chem. 289:25431–25444. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chakraborty S, Das K, Saha S, Mazumdar M,
Manna A, Chakraborty S, Mukherjee S, Khan P, Adhikary A, Mohanty S,
et al: Nuclear matrix protein SMAR1 represses c-Fos-mediated HPV18
E6 transcription through alteration of chromatin histone
deacetylation. J Biol Chem. 289:29074–29085. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chakraborty J, Banerjee S, Ray P, Hossain
DM, Bhattacharyya S, Adhikary A, Chattopadhyay S, Das T and Sa G:
Gain of cellular adaptation due to prolonged p53 impairment leads
to functional switchover from p53 to p73 during DNA damage in acute
myeloid leukemia cells. J Biol Chem. 285:33104–33112. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Mazumdar M, Adhikary A, Chakraborty S,
Mukherjee S, Manna A, Saha S, Mohanty S, Dutta A, Bhattacharjee P,
Ray P, et al: Targeting RET to induce medullary thyroid cancer cell
apoptosis: An antagonistic interplay between PI3K/Akt and
p38MAPK/caspase-8 pathways. Apoptosis. 18:589–604. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mukherjee S, Mazumdar M, Chakraborty S,
Manna A, Saha S, Khan P, Bhattacharjee P, Guha D, Adhikary A,
Mukhjerjee S, et al: Curcumin inhibits breast cancer stem cell
migration by amplifying the E-cadherin/β-catenin negative feedback
loop. Stem Cell Res Ther. 5:1162014. View Article : Google Scholar
|
41
|
Saha S, Mukherjee S, Mazumdar M, Manna A,
Khan P, Adhikary A, Kajal K, Jana D, Sa G, Mukherjee S, et al:
Mithramycin A sensitizes therapy-resistant breast cancer stem cells
toward genotoxic drug doxorubicin. Transl Res. 165:558–577. 2015.
View Article : Google Scholar
|
42
|
Hossain DM, Panda AK, Manna A, Mohanty S,
Bhattacharjee P, Bhattacharyya S, Saha T, Chakraborty S, Kar RK,
Das T, et al: FoxP3 acts as a cotranscription factor with STAT3 in
tumor-induced regulatory T cells. Immunity. 39:1057–1069. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Saha S, Adhikary A, Bhattacharyya P, Das T
and Sa G: Death by design: Where curcumin sensitizes drug-resistant
tumours. Anticancer Res. 32:2567–2584. 2012.PubMed/NCBI
|
44
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Scian MJ, Stagliano KE, Anderson MA,
Hassan S, Bowman M, Miles MF, Deb SP and Deb S: Tumor-derived p53
mutants induce NF-kappaB2 gene expression. Mol Cell Biol.
25:10097–10110. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Schumm K, Rocha S, Caamano J and Perkins
ND: Regulation of p53 tumour suppressor target gene expression by
the p52 NF-kappaB subunit. EMBO J. 25:4820–4832. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Furia B, Deng L, Wu K, Baylor S, Kehn K,
Li H, Donnelly R, Coleman T and Kashanchi F: Enhancement of nuclear
factor-kappa B acetylation by coactivator p300 and HIV-1 Tat
proteins. J Biol Chem. 277:4973–4980. 2002. View Article : Google Scholar
|
48
|
Webster GA and Perkins ND: Transcriptional
cross talk between NF-kappaB and p53. Mol Cell Biol. 19:3485–3495.
1999.PubMed/NCBI
|
49
|
Iyer NG, Chin SF, Ozdag H, Daigo Y, Hu DE,
Cariati M, Brindle K, Aparicio S and Caldas C: p300 regulates
p53-dependent apoptosis after DNA damage in colorectal cancer cells
by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA.
101:7386–7391. 2004. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhong H, Voll RE and Ghosh S:
Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional
activity by promoting a novel bivalent interaction with the
coactivator CBP/p300. Mol Cell. 1:661–671. 1998. View Article : Google Scholar : PubMed/NCBI
|