Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)
- Authors:
- Volker Schirrmacher
-
Affiliations: Immunological and Oncological Center (IOZK), D-50674 Cologne, Germany - Published online on: October 12, 2015 https://doi.org/10.3892/ijo.2015.3197
- Pages: 2005-2016
This article is mentioned in:
Abstract
Ruddle NH and Akirav EM: Secondary lymphoid organs: Responding to genetic and environmental cues in ontogeny and the immune response. J Immunol. 183:2205–2212. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hämmerling GJ, Kyewski B, Hamann A, Umansky V, et al: Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med. 9:1151–1157. 2003. View Article : Google Scholar : PubMed/NCBI | |
Milo I, Sapoznikov A, Kalchenko V, Tal O, Krauthgamer R, van Rooijen N, Dudziak D, Jung S and Shakhar G: Dynamic imaging reveals promiscuous crosspresentation of blood-borne antigens to naive CD8+ T cells in the bone marrow. Blood. 122:193–208. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tokoyoda K, Hauser AE, Nakayama T and Radbruch A: Organization of immunological memory by bone marrow stroma. Nat Rev Immunol. 10:193–200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Feuerer M, Rocha M, Bai L, Umansky V, Solomayer EF, Bastert G, Diel IJ and Schirrmacher V: Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer. 92:96–105. 2001. View Article : Google Scholar : PubMed/NCBI | |
Feuerer M, Beckhove P, Mahnke Y, Hommel M, Kyewski B, Hamann A, Umansky V and Schirrmacher V: Bone marrow microenvironment facilitating dendritic cell: CD4 T cell interactions and maintenance of CD4 memory. Int J Oncol. 25:867–876. 2004.PubMed/NCBI | |
Steinman RM and Banchereau J: Taking dendritic cells into medicine. Nature. 449:419–426. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kyewski B and Haskins K: The classical dichotomy between presentation of endogenous antigens via the MHC class I pathway and exogenous antigens via the MHC class-II pathway. Curr Opin Immunol. 24:67–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khazaie K, Prifti S, Beckhove P, Griesbach A, Russell S, Collins M and Schirrmacher V: Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA. 91:7430–7434. 1994. View Article : Google Scholar : PubMed/NCBI | |
Förg P, von Hoegen P, Dalemans W and Schirrmacher V: Superiority of the ear pinna over muscle tissue as site for DNA vaccination. Gene Ther. 5:789–797. 1998. View Article : Google Scholar : PubMed/NCBI | |
Müller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V and Khazaie K: EblacZ tumor dormancy in bone marrow and lymph nodes: Active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res. 58:5439–5446. 1998. | |
Karrison TG, Ferguson DJ and Meier P: Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst. 91:80–85. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pantel K and Otte M: Occult micrometastasis: Enrichment, identification and characterization of single disseminated tumour cells. Semin Cancer Biol. 11:327–337. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V, Feuerer M, Beckhove P, Ahlert T and Umansky V: T cell memory, anergy and immunotherapy in breast cancer. J Mammary Gland Biol Neoplasia. 7:201–208. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V: T-cell immunity in the induction and maintenance of a tumour dormant state. Semin Cancer Biol. 11:285–295. 2001. View Article : Google Scholar : PubMed/NCBI | |
Krüger A, Umansky V, Rocha M, Hacker HJ, Schirrmacher V and von Hoegen P: Pattern and load of spontaneous liver metastasis dependent on host immune status studied with a lacZ transduced lymphoma. Blood. 84:3166–3174. 1994.PubMed/NCBI | |
Lanzavecchia A and Sallusto F: From synapses to immunological memory: The role of sustained T cell stimulation. Curr Opin Immunol. 12:92–98. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bai L, Beckhove P, Feuerer M, Umansky V, Choi C, Solomayer FS, Diel IJ and Schirrmacher V: Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: Bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer. 103:73–83. 2003. View Article : Google Scholar | |
Di Rosa F and Pabst R: The bone marrow: A nest for migratory memory T cells. Trends Immunol. 26:360–366. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, Engelke K, Xia L, McEver RP, Koni PA, et al: Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity. 22:259–270. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng G, van der Velden AW, Cariappa A, Chase C, Russell P, Starnbach MN, et al: Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol. 6:1029–1037. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G and Zou W: Bone marrow and the control of immunity. Cell Mol Immunol. 9:11–19. 2012. View Article : Google Scholar : | |
Mercier FE, Ragu C and Scadden DT: The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol. 12:49–60. 2012. View Article : Google Scholar | |
Murao A, Oka Y, Tsuboi A, Elisseeva OA, Tanaka-Harada Y, Fujiki F, Nakajima H, Nishida S, Hosen N, Shirakata T, et al: High frequencies of less differentiated and more proliferative WT1-specific CD8+ T cells in bone marrow in tumor-bearing patients: An important role of bone marrow as a secondary lymphoid organ. Cancer Sci. 101:848–854. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Dong H, Lin W, Voss S, Hinkley L, Westergren M, Tian G, Berry D, Lewellen D, Vile RG, et al: Human bone marrow: A reservoir for ‘enhanced effector memory’ CD8+ T cells with potent recall function. J Immunol. 177:6730–6737. 2006. View Article : Google Scholar : PubMed/NCBI | |
Becker TC, Coley SM, Wherry EJ and Ahmed R: Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol. 174:1269–1273. 2005. View Article : Google Scholar : PubMed/NCBI | |
Na IK, Letsch A, Guerreiro M, Bauer S, Noack I, Geginat J, Reinke P, Loesch M, Kienapfel H, Thiel E, et al: Human bone marrow as a source to generate CMV-specific CD4+ T cells with multifunctional capacity. J Immunother. 32:907–913. 2009. View Article : Google Scholar : PubMed/NCBI | |
Castiglioni P, Hall S, Jacovetty EL, Ingulli E and Zanetti M: Protection against influenza A virus by memory CD8 T cells requires reactivation by bone marrow-derived dendritic cells. J Immunol. 180:4956–4964. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fresnay S, Zhang X, Strome SE and Sewell DA: Bone marrow vaccination: A novel approach to enhance antigen specific antitumor immunity. Vaccine. 29:8599–8605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V and Beckhove P: T-cell priming in bone marrow: The potential for long-lasting protective anti-tumor immunity. Trends Mol Med. 9:526–534. 2003. View Article : Google Scholar : PubMed/NCBI | |
van der Merwe PA and Dushek O: Mechanisms for T cell receptor triggering. Nat Rev Immunol. 11:47–55. 2011. View Article : Google Scholar | |
Bannard O, Kraman M and Fearon D: Pathways of memory CD8+ T-cell development. Eur J Immunol. 39:2083–2087. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Leeuwen EM, Sprent J and Surh CD: Generation and maintenance of memory CD4+ T cells. Curr Opin Immunol. 21:167–172. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fournier P, Aigner M and Schirrmacher V: Transcriptome analysis and cytokine profiling of naive T cells stimulated by a tumor vaccine via CD3 and CD25. Int J Oncol. 37:1439–1452. 2010.PubMed/NCBI | |
Schiavoni G, Mattei F and Gabriele L: Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol. 4:4832013. View Article : Google Scholar | |
Sallusto F, Geginat J and Lanzavecchia A: Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu Rev Immunol. 22:745–763. 2004. View Article : Google Scholar : PubMed/NCBI | |
Aigner M, Janke M, Lulei M, Beckhove P, Fournier P and Schirrmacher V: An effective tumor vaccine optimized for costimulation via bispecific and trispecific fusion proteins. Int J Oncol. 32:777–789. 2008.PubMed/NCBI | |
Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, et al: Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest. 114:67–76. 2004. View Article : Google Scholar : PubMed/NCBI | |
Herndler-Brandstetter D, Landgraf K, Jenewein B, Tzankov A, Brunauer R, Brunner S, Parson W, Kloss F, Gassner R, Lepperdinger G, et al: Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J Immunol. 186:6965–6971. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, Kitano S, Ishii M, Tani-ichi S and Ikuta K: Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci USA. 111:1915–1920. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sercan Alp Ö, Durlanik S, Schulz D, McGrath M, Grün JR, Bardua M, Ikuta K, Sgouroudis E, Riedel R, Zehentmeier S, et al: Memory CD8+ T cells colocalize with IL-7+ stromal cells in bone marrow and rest in terms of proliferation and transcription. Eur J Immunol. 45:975–987. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nemoto Y, Kanai T, Takahara M, Oshima S, Nakamura T, Okamoto R, Tsuchiya K and Watanabe M: Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut. 62:1142–1152. 2013. View Article : Google Scholar : | |
Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grün JR, Löhning M and Radbruch A: Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity. 30:721–730. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mahnke YD, Schwendemann J, Beckhove P and Schirrmacher V: Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology. 115:325–336. 2005. View Article : Google Scholar : PubMed/NCBI | |
Parretta E, Cassese G, Santoni A, Guardiola J, Vecchio A and Di Rosa F: Kinetics of in vivo proliferation and death of memory and naive CD8 T cells: Parameter estimation based on 5-bromo-2′-deoxyuridine incorporation in spleen, lymph nodes, and bone marrow. J Immunol. 180:7230–7239. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I and Jung S: Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol. 9:388–395. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pillai S and Cariappa A: The bone marrow perisinusoidal niche for recirculating B cells and the positive selection of bone marrow-derived B lymphocytes. Immunol Cell Biol. 87:16–19. 2009. View Article : Google Scholar | |
Hsu SC, Wang LT, Yao CL, Lai HY, Chan KY, Liu BS, Chong P, Lee OK and Chen HW: Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiology. 218:90–95. 2013. View Article : Google Scholar | |
Duffy D, Perrin H, Abadie V, Benhabiles N, Boissonnas A, Liard C, Descours B, Reboulleau D, Bonduelle O, Verrier B, et al: Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity. 37:917–929. 2012. View Article : Google Scholar : PubMed/NCBI | |
Di Rosa F and Santoni A: Memory T-cell competition for bone marrow seeding. Immunology. 108:296–304. 2003. View Article : Google Scholar : PubMed/NCBI | |
Palendira U, Chinn R, Raza W, Piper K, Pratt G, Machado L, Bell A, Khan N, Hislop AD, Steyn R, et al: Selective accumulation of virus-specific CD8+ T cells with unique homing phenotype within the human bone marrow. Blood. 112:3293–3302. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dudda JC, Lembo A, Bachtanian E, Huehn J, Siewert C, Hamann A, Kremmer E, Förster R and Martin SF: Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: Important roles for soluble factors and tissue microenvironments. Eur J Immunol. 35:1056–1065. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mahnke YD and Schirrmacher V: Characteristics of a potent tumor vaccine-induced secondary anti-tumor T cell response. Int J Oncol. 24:1427–1434. 2004.PubMed/NCBI | |
Schwendemann J, Choi C, Schirrmacher V and Beckhove P: Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells. J Immunol. 175:1433–1439. 2005. View Article : Google Scholar : PubMed/NCBI | |
Harley CB and Villeponteau B: Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev. 5:249–255. 1995. View Article : Google Scholar : PubMed/NCBI | |
Akbar AN, Beverley PC and Salmon M: Will telomere erosion lead to a loss of T-cell memory? Nat Rev Immunol. 4:737–743. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V, Beutner U, Bucur M, Umansky V, Rocha M and von Hoegen P: Loss of endogenous mouse mammary tumor virus superantigen increases tumor resistance. J Immunol. 161:563–570. 1998.PubMed/NCBI | |
Müerköster S, Weigand MA, Choi C, Walczak H, Schirrmacher V and Umansky V: Superantigen reactive Vbeta6+ T cells induce perforin/granzyme B mediated caspase-independent apoptosis in tumour cells. Br J Cancer. 86:828–836. 2002. View Article : Google Scholar | |
Schirrmacher V, Müerköster S, Bucur M, Umansky V and Rocha M: Breaking tolerance to a tumor-associated viral superantigen as a basis for graft-versus-leukemia reactivity. Int J Cancer. 87:695–706. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V, Beckhove P, Krüger A, Rocha M, Umansky V, Fichtner K, Hull W, Zangemeisterwittke U, Griesbach A, Jurianz K, et al: Effective immune rejection of advanced metastasized cancer. Int J Oncol. 6:505–521. 1995.PubMed/NCBI | |
Schirrmacher V: Complete remission of cancer in late-stage disease by radiation and transfer of allogeneic MHC-matched immune T cells: Lessons from GvL studies in animals. Cancer Immunol Immunother. 63:535–543. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V, Beckhove P, Choi C, Griesbach A and Mahnke Y: Tumor-immune memory T cells from the bone marrow exert GvL without GvH reactivity in advanced metastasized cancer. Int J Oncol. 27:1141–1149. 2005.PubMed/NCBI | |
Rocha M, Umansky V, Lee KH, Hacker HJ, Benner A and Schirrmacher V: Differences between graft-versus-leukemia and graft-versus-host reactivity. I Interaction of donor immune T cells with tumor and/or host cells. Blood. 89:2189–2202. 1997.PubMed/NCBI | |
Müerköster S, Wachowski O, Zerban H, Schirrmacher V, Umansky V and Rocha M: Graft-versus-leukemia reactivity involves cluster formation between superantigen-reactive donor T lymphocytes and host macrophages. Clin Cancer Res. 4:3095–3106. 1998.PubMed/NCBI | |
Müerköster S, Laman JD, Rocha M, Umansky V and Schirrmacher V: Functional and in situ evidence for nitric oxide production driven by CD40-CD40L interactions in graft-versus-leukemia reactivity. Clin Cancer Res. 6:1988–1996. 2000.PubMed/NCBI | |
Müerköster S, Rocha M, Crocker PR, Schirrmacher V and Umansky V: Sialoadhesin-positive host macrophages play an essential role in graft-versus-leukemia reactivity in mice. Blood. 93:4375–4386. 1999.PubMed/NCBI | |
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/ M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Umansky V and Schirrmacher V: Nitric oxide-induced apoptosis in tumor cells. Adv Cancer Res. 82:107–131. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rocha M, Krüger A, Van Rooijen N, Schirrmacher V and Umansky V: Liver endothelial cells participate in T-cell-dependent host resistance to lymphoma metastasis by production of nitric oxide in vivo. Int J Cancer. 63:405–411. 1995. View Article : Google Scholar : PubMed/NCBI | |
Park HS, Cho SG, Park MJ, Min SY, Chang HS, Kim HJ, Lee S, Min CK, Lee JW, Min WS, et al: Bone marrow T cells are superior to splenic T cells to induce chimeric conversion after non-myeloablative bone marrow transplantation. Korean J Intern Med. 24:252–262. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dutt S, Baker J, Kohrt HE, Kambham N, Sanyal M, Negrin RS and Strober S: CD8+CD44hi but not CD4+CD44hi memory T cells mediate potent graft antilymphoma activity without GVHD. Blood. 117:3230–3239. 2011. View Article : Google Scholar : PubMed/NCBI | |
Casucci M, Perna SK, Falcone L, Camisa B, Magnani Z, Bernardi M, Crotta A, Tresoldi C, Fleischhauer K, Ponzoni M, et al: Graft-versus-leukemia effect of HLA-haploidentical central-memory T-cells expanded with leukemic APCs and modified with a suicide gene. Mol Ther. 21:466–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ueda R, Low KL, Zhu X, Fujita M, Sasaki K, Whiteside TL, Butterfield LH and Okada H: Spontaneous immune responses against glioma-associated antigens in a long term survivor with malignant glioma. J Transl Med. 5:682007. View Article : Google Scholar : PubMed/NCBI | |
Wang XF, Kerzerho J, Adotevi O, Nuyttens H, Badoual C, Munier G, Oudard S, Tu S, Tartour E and Maillère B: Comprehensive analysis of HLA-DR- and HLA-DP4-restricted CD4+ T cell response specific for the tumor-shared antigen survivin in healthy donors and cancer patients. J Immunol. 181:431–439. 2008. View Article : Google Scholar : PubMed/NCBI | |
Knights AJ, Nuber N, Thomson CW, de la Rosa O, Jäger E, Tiercy JM, van den Broek M, Pascolo S, Knuth A and Zippelius A: Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother. 58:325–338. 2009. View Article : Google Scholar | |
Domschke C, Schuetz F, Ge Y, Seibel T, Falk C, Brors B, Vlodavsky I, Sommerfeldt N, Sinn HP, Kühnle MC, et al: Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res. 69:8420–8428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ohue Y, Eikawa S, Okazaki N, Mizote Y, Isobe M, Uenaka A, Fukuda M, Old LJ, Oka M and Nakayama E: Spontaneous antibody, and CD4 and CD8 T-cell responses against XAGE-1b (GAGED2a) in non-small cell lung cancer patients. Int J Cancer. 131:E649–E658. 2012. View Article : Google Scholar | |
Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V and Umansky V: Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med. 7:452–458. 2001. View Article : Google Scholar : PubMed/NCBI | |
Koch M, Beckhove P, Op den Winkel J, Autenrieth D, Wagner P, Nummer D, Specht S, Antolovic D, Galindo L, Schmitz-Winnenthal FH, et al: Tumor infiltrating T lymphocytes in colorectal cancer: Tumor-selective activation and cytotoxic activity in situ. Ann Surg. 244:986–992; discussion 992–993. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schmitz-Winnenthal FH, Volk C, Z'graggen K, Galindo L, Nummer D, Ziouta Y, Bucur M, Weitz J, Schirrmacher V, Büchler MW, et al: High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res. 65:10079–10087. 2005. View Article : Google Scholar : PubMed/NCBI | |
Müller-Berghaus J, Ehlert K, Ugurel S, Umansky V, Bucur M, Schirrmacher V, Beckhove P and Schadendorf D: Melanoma-reactive T cells in the bone marrow of melanoma patients: Association with disease stage and disease duration. Cancer Res. 66:5997–6001. 2006. View Article : Google Scholar : PubMed/NCBI | |
Choi C, Witzens M, Bucur M, Feuerer M, Sommerfeldt N, Trojan A, Ho A, Schirrmacher V, Goldschmidt H and Beckhove P: Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of multiple myeloma patients. Blood. 105:2132–2134. 2005. View Article : Google Scholar | |
Sommerfeldt N, Schütz F, Sohn C, Förster J, Schirrmacher V and Beckhove P: The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res. 66:8258–8265. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beckhove P and Schirrmacher V: Local tumor growth and spontaneous systemic T cell responses in cancer patients: A paradox and puzzle. Innate and Adaptive Immunity in The Tumor Microenvironment. Yefenof E: Springer Science; pp. 53–76. 2008, View Article : Google Scholar | |
Alvarez D, Vollmann EH and von Andrian UH: Mechanisms and consequences of dendritic cell migration. Immunity. 29:325–342. 2008. View Article : Google Scholar : PubMed/NCBI | |
Veiga-Fernandes H, Walter U, Bourgeois C, McLean A and Rocha B: Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol. 1:47–53. 2000. View Article : Google Scholar | |
Schuetz F, Ehlert K, Ge Y, Schneeweiss A, Rom J, Inzkirweli N, Sohn C, Schirrmacher V and Beckhove P: Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: A pilot clinical study. Cancer Immunol Immunother. 58:887–900. 2009. View Article : Google Scholar | |
Domschke C, Ge Y, Bernhardt I, Schott S, Keim S, Juenger S, Bucur M, Mayer L, Blumenstein M, Rom J, et al: Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: Follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother. 62:1053–1060. 2013. View Article : Google Scholar : PubMed/NCBI | |
Flynn JK and Gorry PR: Stem memory T cells (TSCM)-their role in cancer and HIV immunotherapies. Clin Transl Immunology. 3:e202014. View Article : Google Scholar : PubMed/NCBI | |
Okhrimenko A, Grün JR, Westendorf K, Fang Z, Reinke S, von Roth P, Wassilew G, Kühl AA, Kudernatsch R, Demski S, et al: Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc Natl Acad Sci USA. 111:9229–9234. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aiello FB, Graciotti L, Procopio AD, Keller JR and Durum SK: Stemness of T cells and the hematopoietic stem cells: Fate, memory, niche, cytokines. Cytokine Growth Factor Rev. 24:485–501. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kudernatsch RF, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk HD and Scheibenbogen C: Human bone marrow contains a subset of quiescent early memory CD8+ T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 44:3532–3542. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roberto A, Castagna L, Zanon V, Bramanti S, Crocchiolo R, McLaren JE, Gandolfi S, Tentorio P, Sarina B, Timofeeva I, et al: Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood. 125:2855–2864. 2015. View Article : Google Scholar : PubMed/NCBI | |
Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno R, et al: In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med. 7:273ra132015. View Article : Google Scholar : PubMed/NCBI | |
Schmueck-Henneresse M, Sharaf R, Vogt K, Weist BJ, Landwehr-Kenzel S, Fuehrer H, Jurisch A, Babel N, Rooney CM, Reinke P, et al: Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 194:5559–5567. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, Montandon N, Rufer N, Waldvogel S, Delorenzi M, et al: Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination. Sci Transl Med. 7:282ra482015. View Article : Google Scholar | |
Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F, et al: IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 121:573–584. 2013. View Article : Google Scholar | |
Coffmann RL, Sher A and Seder RA: Vaccine adjuvants: Putting innate immunity at work. Immunity. 33:492–503. 2010. View Article : Google Scholar | |
Woodland DL and Blackman MA: Immunity: It's in our bones. Immunity. 22:143–144. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fournier P and Schirrmacher V: Oncolytic Newcastle disease virus as cutting edge between tumor and host. Biology (Basel). 2:936–975. 2013. | |
Schirrmacher V, Fournier P and Schlag P: Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: Long-term patient survival and mechanism of function. Expert Rev Vaccines. 13:117–130. 2014. View Article : Google Scholar | |
Schirrmacher V, Schlude C, Weitz J and Beckhove P: Strong T-cell costimulation can reactivate tumor antigen-specific T cells in late-stage metastasized colorectal carcinoma patients: Results from a phase I clinical study. Int J Oncol. 46:71–77. 2015. | |
Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD and Allison JP: Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 6:226ra322014. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V, Bihari AS, Stücker W and Sprenger T: Long-term remission of prostate cancer with extensive bone metastases upon immuno- and virotherapy: A case report. Oncol Lett. 8:2403–2406. 2014.PubMed/NCBI | |
Schirrmacher V, Stücker W, Lulei M, Bihari AS and Sprenger T: Long-term survival of a breast cancer patient with extensive liver metastases upon immune and virotherapy: a case report. Immunotherapy. 7:855–860. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA and Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry RM, Kammula US, et al: Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 33:1543–1550. 2015. View Article : Google Scholar | |
Sung JH, Zhang H, Moseman EA, Alvarez D, Iannacone M, Henrickson SE, de la Torre JC, Groom JR, Luster AD and von Andrian UH: Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell. 150:1249–1263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sugiyama T, Kohara H, Noda M and Nagasawa T: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 25:977–988. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hanazawa A, Hayashizaki K, Shinoda K, Yagita H, Okumura K, Löhning M, Hara T, Tani-ichi S, Ikuta K, Eckes B, et al: CD49b-dependent establishment of T helper cell memory. Immunol Cell Biol. 91:524–531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Henrickson SE, Perro M, Loughhead SM, Senman B, Stutte S, Quigley M, Alexe G, Iannacone M, Flynn MP, Omid S, et al: Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity. 39:496–507. 2013. View Article : Google Scholar : PubMed/NCBI |