The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review)
- Authors:
- Xiaofen Yuan
- Xidi Wang
- Kehong Bi
- Guosheng Jiang
-
Affiliations: Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China, Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, P.R. China, Department of Hematology, Qianfoshan Hospital of Shandong, Jinan, Shandong, P.R. China - Published online on: October 15, 2015 https://doi.org/10.3892/ijo.2015.3207
- Pages: 2028-2036
This article is mentioned in:
Abstract
![]() |
![]() |
Nucifora G, Laricchia-Robbio L and Senyuk V: EVI1 and hematopoietic disorders: History and perspectives. Gene. 368:1–11. 2006. View Article : Google Scholar | |
Haladyna JN, Yamauchi T, Neff T and Bernt KM: Epigenetic modifiers in normal and malignant hematopoiesis. Epigenomics. 7:301–320. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD and Yamamoto M: A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI-1 expression. Cancer Cell. 25:415–427. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ney Garcia DR, Liehr T, Emerenciano M, Meyer C, Marschalek R, Pombo-de-Oliveira MS, Ribeiro RC, Poirot Land MG and Macedo Silva ML: Molecular studies reveal a MLL-MLLT3 gene fusion displaced in a case of childhood acute lymphoblastic leukemia with complex karyotype. Cancer Genet. 208:143–147. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Braekeleer M, Le Bris MJ, De Braekeleer E, Basinko A, Morel F and Douet-Guilbert N: 3q26/EVI-1 rearrangements in myeloid hemopathies: A cytogenetic review. Future Oncol. 11:1675–1686. 2015. View Article : Google Scholar | |
Su G, Lian X, Tan D, Tao H, Liu H, Chen S, Yin H, Wu D and Yin B: Aberrant expression of ecotropic viral integration site-1 in acute myeloid leukemia and acute lymphoblastic leukemia. Leuk Lymphoma. 56:472–479. 2015. View Article : Google Scholar | |
Glass C, Wilson M, Gonzalez R, Zhang Y and Perkins AS: The role of EVI1 in myeloid malignancies. Blood Cells Mol Dis. 53:67–76. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koos B, Bender S, Witt H, Mertsch S, Felsberg J, Beschorner R, Korshunov A, Riesmeier B, Pfister S, Paulus W, et al: The transcription factor evi-1 is overexpressed, promotes proliferation, and is prognostically unfavorable in infratentorial ependymomas. Clin Cancer Res. 17:3631–3637. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jazaeri AA, Ferriss JS, Bryant JL, Dalton MS and Dutta A: Evaluation of EVI-1 and EVI-1s (Delta324) as potential therapeutic targets in ovarian cancer. Gynecol Oncol. 118:189–195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balgobind BV, Lugthart S, Hollink IH, Arentsen-Peters ST, van Wering ER, de Graaf SS, Reinhardt D, Creutzig U, Kaspers GJ, de Bont ES, et al: EVI-1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 24:942–949. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yasui K, Konishi C, Gen Y, Endo M, Dohi O, Tomie A, Kitaichi T, Yamada N, Iwai N, Nishikawa T, et al: EVI-1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma. Cancer Sci. 106:929–937. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bindels EMJ, Havermans M, Lugthart S, Erpelinck C, Wocjtowicz E, Krivtsov AV, Rombouts E, Armstrong SA, Taskesen E, Haanstra JR, et al: EVI-1 is critical for the pathogenesis of a subset of MLL-AF9-rearranged AMLs. Blood. 119:5838–5849. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC III, Jenkins NA and Copeland NG: Identification of a common ecotropic viral integration site, EVI-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol. 8:301–308. 1988. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Wang L and Hao Y: Advances in the study of EVI-1 and mds1 genes. Zhonghua Xue Ye Xue Za Zhi. 20:331–333. 1999.(In Chinese). | |
Aytekin M, Vinatzer U, Musteanu M, Raynaud S and Wieser R: Regulation of the expression of the oncogene EVI-1 through the use of alternative mRNA 5′-ends. Gene. 356:160–168. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD and Nucifora G: Intergenic splicing of MDS1 and EVI-1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA. 93:1642–1647. 1996. View Article : Google Scholar | |
Soderholm J, Kobayashi H, Mathieu C, Rowley JD and Nucifora G: The leukemia-associated gene MDS1/EVI-1 is a new type of GATA-binding transactivator. Leukemia. 11:352–358. 1997. View Article : Google Scholar : PubMed/NCBI | |
Delwel R, Funabiki T, Kreider BL, Morishita K and Ihle JN: Four of the seven zinc fingers of the EVI-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T) AAGA(T/C)AAGATAA. Mol Cell Biol. 13:4291–4300. 1993. View Article : Google Scholar : PubMed/NCBI | |
Funabiki T, Kreider BL and Ihle JN: The carboxyl domain of zinc fingers of the EVI-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Oncogene. 9:1575–1581. 1994.PubMed/NCBI | |
Lopingco MC and Perkins AS: Molecular analysis of EVI-1, a zinc finger oncogene involved in myeloid leukemia. Curr Top Microbiol Immunol. 211:211–222. 1996. | |
Saito Y and Morishita K: Maintenance of leukemic and normal hematopoietic stem cells in bone marrow niches by EVI-1-regulated GPR56. Rinsho Ketsueki. 56:375–383. 2015.(In Japanese). PubMed/NCBI | |
Fukuda S, Hoggatt J, Singh P, Abe M, Speth JM, Hu P, Conway EM, Nucifora G, Yamaguchi S and Pelus LM: Survivin modulates genes with divergent molecular functions and regulates proliferation of hematopoietic stem cells through EVI-1. Leukemia. 29:433–440. 2015. View Article : Google Scholar | |
Goyama S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S, Chiba S and Kurokawa M: EVI-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell. 3:207–220. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A, Mucenski ML, Suda T and Morishita K: Oncogenic transcription factor EVI-1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 24:1976–1987. 2005. View Article : Google Scholar : PubMed/NCBI | |
Matsugi T, Kreider BL, Delwel R, Cleveland JL, Askew DS and Ihle JN: The EVI-1 zinc finger myeloid transforming protein binds to genomic fragments containing (GATA)n sequences. Oncogene. 11:191–198. 1995.PubMed/NCBI | |
Kreider BL, Orkin SH and Ihle JN: Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the EVI-1 myeloid-transforming gene. Proc Natl Acad Sci USA. 90:6454–6458. 1993. View Article : Google Scholar : PubMed/NCBI | |
Laricchia-Robbio L, Fazzina R, Li D, Rinaldi CR, Sinha KK, Chakraborty S and Nucifora G: Point mutations in two EVI-1 Zn fingers abolish EVI-1-GATA1 interaction and allow erythroid differentiation of murine bone marrow cells. Mol Cell Biol. 26:7658–7666. 2006. View Article : Google Scholar : PubMed/NCBI | |
Louz D, van den Broek M, Verbakel S, Vankan Y, van Lom K, Joosten M, Meijer D, Löwenberg B and Delwel R: Erythroid defects and increased retrovirally-induced tumor formation in EVI-1 transgenic mice. Leukemia. 14:1876–1884. 2000. View Article : Google Scholar : PubMed/NCBI | |
Morishita K, Parganas E, Matsugi T and Ihle JN: Expression of the EVI-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol Cell Biol. 12:183–189. 1992. View Article : Google Scholar : PubMed/NCBI | |
Boyd KE, Xiao YY, Fan K, Poholek A, Copeland NG, Jenkins NA and Perkins AS: Sox4 cooperates with EVI-1 in AKXD-23 myeloid tumors via transactivation of proviral LTR. Blood. 107:733–741. 2006. View Article : Google Scholar | |
Laricchia-Robbio L, Premanand K, Rinaldi CR and Nucifora G: EVI-1 Impairs myelopoiesis by deregulation of PU.1 function. Cancer Res. 69:1633–1642. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shimizu S, Nagasawa T, Katoh O, Komatsu N, Yokota J and Morishita K: EVI-1 is expressed in megakaryocyte cell lineage and enforced expression of EVI-1 in UT-7/GM cells induces megakaryocyte differentiation. Biochem Biophys Res Commun. 292:609–616. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kilbey A, Alzuherri H, McColl J, Calés C, Frampton J and Bartholomew C: The EVI-1 proto-oncoprotein blocks endomitosis in megakaryocytes by inhibiting sustained cyclin-dependent kinase 2 catalytic activity. Br J Haematol. 130:902–911. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BA, Erpelinck C, van der Velden VH, Havermans M, Avellino R, van Lom K, et al: A single oncogenic enhancer rearrangement causes concomitant EVI-1 and GATA2 deregulation in leukemia. Cell. 157:369–381. 2014. View Article : Google Scholar | |
Lahortiga I, Vázquez I, Agirre X, Larrayoz MJ, Vizmanos JL, Gozzetti A, Calasanz MJ and Odero MD: Molecular heterogeneity in AML/MDS patients with 3q21q26 rearrangements. Genes Chromosomes Cancer. 40:179–189. PubMed/NCBI | |
Matsuo H, Kajihara M, Tomizawa D, Watanabe T, Saito AM, Fujimoto J, Horibe K, Kodama K, Tokumasu M, Itoh H, et al: EVI-1 overexpression is a poor prognostic factor in pediatric patients with mixed lineage leukemia-AF9 rearranged acute myeloid leukemia. Haematologica. 99:e225–e227. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goyama S and Kurokawa M: EVI-1 as a critical regulator of leukemic cells. Int J Hematol. 91:753–757. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ito Y: Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene. 23:4198–4208. 2004. View Article : Google Scholar : PubMed/NCBI | |
van Wijnen AJ, Stein GS, Gergen JP, Groner Y, Hiebert SW, Ito Y, Liu P, Neil JC, Ohki M and Speck N: Nomenclature for Runt-related (RUNX) proteins. Oncogene. 23:4209–4210. 2004. View Article : Google Scholar : PubMed/NCBI | |
Levanon D and Groner Y: Structure and regulated expression of mammalian RUNX genes. Oncogene. 23:4211–4219. 2004. View Article : Google Scholar : PubMed/NCBI | |
Durst KL and Hiebert SW: Role of RUNX family members in transcriptional repression and gene silencing. Oncogene. 23:4220–4224. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cameron ER and Neil JC: The Runx genes: Lineage-specific oncogenes and tumor suppressors. Oncogene. 23:4308–4314. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mitani K: Molecular mechanisms of leukemogenesis by AML1/ EVI-1. Oncogene. 23:4263–4269. 2004. View Article : Google Scholar : PubMed/NCBI | |
Palmer S, Brouillet JP, Kilbey A, Fulton R, Walker M, Crossley M and Bartholomew C: EVI-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem. 276:25834–25840. 2001. View Article : Google Scholar : PubMed/NCBI | |
Senyuk V, Chakraborty S, Mikhail FM, Zhao R, Chi Y and Nucifora G: The leukemia-associated transcription repressor AML1/MDS1/EVI-1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells. Oncogene. 21:3232–3240. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chinnadurai G: CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell. 9:213–224. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kahata K, Asaka M and Miyazono K: TGF-beta signaling and carcinogenesis. Nihon Rinsho. 63(Suppl 4): 549–554. 2005.(In Japanese). | |
Hirai H, Izutsu K, Kurokawa M and Mitani K: Oncogenic mechanisms of EVI-1 protein. Cancer Chemother Pharmacol. 48(Suppl 1): S35–S40. 2001. View Article : Google Scholar : PubMed/NCBI | |
Alliston T, Ko TC, Cao Y, Liang YY, Feng XH, Chang C and Derynck R: Repression of bone morphogenetic protein and activin-inducible transcription by EVI-1. J Biol Chem. 280:24227–24237. 2005. View Article : Google Scholar : PubMed/NCBI | |
Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K and Hirai H: The corepressor CtBP interacts with EVI-1 to repress transforming growth factor β signaling. Blood. 97:2815–2822. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vinatzer U, Taplick J, Seiser C, Fonatsch C and Wieser R: The leukaemia-associated transcription factors EVI-1 and MDS1/ EVI-1 repress transcription and interact with histone deacetylase. Br J Haematol. 114:566–573. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen L, Ko TC, Fields AP and Thompson EA: EVI-1 is a survival factor which conveys resistance to both TGFbeta-and taxol-mediated cell death via PI3K/AKT. Oncogene. 25:3565–3575. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, Ogawa S, Moriguchi T, Nishida E, Yazaki Y and Hirai H: The EVI-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J. 19:2958–2968. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y and Hirai H: EVI-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain. J Biol Chem. 269:24020–24026. 1994.PubMed/NCBI | |
Zhang Y, Sicot G, Cui X, Vogel M, Wuertzer CA, Lezon-Geyda K, Wheeler J, Harki DA, Muzikar KA, Stolper DA, et al: Targeting a DNA binding motif of the EVI-1 protein by a pyrrole-imidazole polyamide. Biochemistry. 50:10431–10441. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kilbey A, Stephens V and Bartholomew C: Loss of cell cycle control by deregulation of cyclin-dependent kinase 2 kinase activity in EVI-1 transformed fibroblasts. Cell Growth Differ. 10:601–610. 1999.PubMed/NCBI | |
Karakaya K, Herbst F, Ball C, Glimm H, Krämer A and Löffler H: Overexpression of EVI-1 interferes with cytokinesis and leads to accumulation of cells with supernumerary centrosomes in G0/1 phase. Cell Cycle. 11:3492–3503. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pradhan AK, Mohapatra AD, Nayak KB and Chakraborty S: Acetylation of the proto-oncogene EVI-1 abrogates Bcl-xL promoter binding and induces apoptosis. PLoS One. 6:e253702011. View Article : Google Scholar | |
Vázquez I, Maicas M, Cervera J, Agirre X, Marin-Béjar O, Marcotegui N, Vicente C, Lahortiga I, Gomez-Benito M, Carranza C, et al: Down-regulation of EVI-1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica. 96:1448–1456. 2011. View Article : Google Scholar | |
White DJ, Unwin RD, Bindels E, Pierce A, Teng HY, Muter J, Greystoke B, Somerville TD, Griffiths J, Lovell S, et al: Phosphorylation of the leukemic oncoprotein EVI-1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability. PLoS One. 8:e665102013. View Article : Google Scholar | |
Volkert S, Schnittger S, Zenger M, Kern W, Haferlach T and Haferlach C: Amplification of EVI-1 on cytogenetically cryptic double minutes as new mechanism for increased expression of EVI-1. Cancer Genet. 207:103–108. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lugthart S, Figueroa ME, Bindels E, Skrabanek L, Valk PJ, Li Y, Meyer S, Erpelinck-Verschueren C, Greally J, Löwenberg B, et al: Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI-1. Blood. 117:234–241. 2011. View Article : Google Scholar : | |
Yoshimi A and Kurokawa M: EVI-1 forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget. 2:575–586. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maicas M, Vázquez I, Vicente C, García-Sánchez MA, Marcotegui N, Urquiza L, Calasanz MJ and Odero MD: Functional characterization of the promoter region of the human EVI-1 gene in acute myeloid leukemia: RUNX1 and ELK1 directly regulate its transcription. Oncogene. 32:2069–2078. 2013. View Article : Google Scholar | |
Vasyutina E, Boucas JM, Bloehdorn J, Aszyk C, Crispatzu G, Stiefelhagen M, Breuer A, Mayer P, Lengerke C, Döhner H, et al: The regulatory interaction of EVI-1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL. Leukemia. 10:10382015. | |
Matsuo H, Goyama S, Kamikubo Y and Adachi S: The subtype-specific features of EVI-1 and PRDM16 in acute myeloid leukemia. Haematologica. 100:e116–e117. 2015. View Article : Google Scholar : PubMed/NCBI | |
Takahashi S: Epigenetic aberrations in myeloid malignancies (Review). Int J Mol Med. 32:532–538. 2013.PubMed/NCBI | |
Jo A, Mitani S, Shiba N, Hayashi Y, Hara Y, Takahashi H, Tsukimoto I, Tawa A, Horibe K, Tomizawa D, et al: High expression of EVI-1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia. 29:1076–1083. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lavallée VP, Gendron P, Lemieux S, D'Angelo G, Hébert J and Sauvageau G: EVI-1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations. Blood. 125:140–143. 2015. View Article : Google Scholar |