Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer
- Authors:
- Xia Liu
- Jing Zou
- Jie Su
- Yi Lu
- Jian Zhang
- Li Li
- Fuqiang Yin
-
Affiliations: Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China - Published online on: November 19, 2015 https://doi.org/10.3892/ijo.2015.3254
- Pages: 243-252
This article is mentioned in:
Abstract
Matsuo K, Eno ML, Im DD, Rosenshein NB and Sood AK: Clinical relevance of extent of extreme drug resistance in epithelial ovarian carcinoma. Gynecol Oncol. 116:61–65. 2010. View Article : Google Scholar | |
Cannistra SA: Cancer of the ovary. N Engl J Med. 351:2519–2529. 2004. View Article : Google Scholar : PubMed/NCBI | |
Agarwal R and Kaye SB: Ovarian cancer: Strategies for over-coming resistance to chemotherapy. Nat Rev Cancer. 3:502–516. 2003. View Article : Google Scholar : PubMed/NCBI | |
Parikh A, Lee C, Joseph P, Marchini S, Baccarini A, Kolev V, Romualdi C, Fruscio R, Shah H, Wang F, et al: microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun. 5:29772014. View Article : Google Scholar : PubMed/NCBI | |
Shah JS, Cole AJ, Dickson KA, Soon P and Marsh DJ: Investigating the role of long non-coding RNAs in cisplatin resistance in ovarian cancer. Asia Pac J Clin Oncol. 10:42. 2014. | |
Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 111:478–486. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suh DH, Kim MK, No JH, Chung HH and Song YS: Metabolic approaches to overcoming chemoresistance in ovarian cancer. Ann NY Acad Sci. 1229:53–60. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncol Rep. 30:3–10. 2013.PubMed/NCBI | |
Richardson A and Kaye SB: Drug resistance in ovarian cancer: The emerging importance of gene transcription and spatio-temporal regulation of resistance. Drug Resist Updat. 8:311–321. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Gao Y, Lu Y, Zhang J, Li L and Yin F: Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol. 141:381–395. 2015. View Article : Google Scholar | |
Kahl CR and Means AR: Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev. 24:719–736. 2003. View Article : Google Scholar : PubMed/NCBI | |
Roderick HL and Cook SJ: Ca2+ signalling checkpoints in cancer: Remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 8:361–375. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rajewskaya TA, Goncharova SA, Konovalova NP, Kotelnikova RA and Tatyanenko LV: Effect of drug resistance modulator, NO donor, on membrane structure and function of membrane-bound Ca2+-activated Mg2+-dependent ATPase. Bull Exp Biol Med. 146:200–202. 2008. View Article : Google Scholar | |
Clapham DE, Runnels LW and Strübing C: The TRP ion channel family. Nat Rev Neurosci. 2:387–396. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nilius B and Szallasi A: Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol Rev. 66:676–814. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ong HL and Ambudkar IS: The dynamic complexity of the TRPC1 channelosome. Channels (Austin). 5:424–431. 2011. View Article : Google Scholar | |
Selli C, Erac Y and Tosun M: Simultaneous measurement of cytosolic and mitochondrial calcium levels: Observations in TRPC1-silenced hepatocellular carcinoma cells. J Pharmacol Toxicol Methods. 72:29–34. 2015. View Article : Google Scholar | |
He B, Liu F, Ruan J, Li A, Chen J, Li R, Shen J, Zheng D and Luo R: Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells. Oncol Rep. 27:1548–1554. 2012.PubMed/NCBI | |
Tajeddine N and Gailly P: TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem. 287:16146–16157. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zeng B, Yuan C, Yang X, Atkin SL and Xu SZ: TRPC channels and their splice variants are essential for promoting human ovarian cancer cell proliferation and tumorigenesis. Curr Cancer Drug Targets. 13:103–116. 2013. View Article : Google Scholar | |
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI | |
Edgar R, Domrachev M and Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : | |
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multi-dimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al: Integrative analysis of complex cancer genomics and clinical profiles using the cBio-Portal. Sci Signal. 6:pl12013. View Article : Google Scholar | |
Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD and Morris Q: GeneMANIA prediction server 2013 update. Nucleic Acids Res. 41(W1): W115–W122. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuhn M, von Mering C, Campillos M, Jensen LJ and Bork P: STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 36(Database): D684–D688. 2008. View Article : Google Scholar : | |
Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ and Bork P: STITCH 4: Integration of protein-chemical interactions with user data. Nucleic Acids Res. 42(D1): D401–D407. 2014. View Article : Google Scholar | |
de Leeuw N, Dijkhuizen T, Hehir-Kwa JY, Carter NP, Feuk L, Firth HV, Kuhn RM, Ledbetter DH, Martin CL, van Ravenswaaij-Arts CM, et al: Diagnostic interpretation of array data using public databases and internet sources. Hum Mutat. 33:930–940. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dweep H, Sticht C, Pandey P and Gretz N: miRWalk-database: Prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T and Hatzigeorgiou AG: DIANA miRPath v.20: Investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 40(W1): W498–W504. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hedditch EL, Gao B, Russell AJ, Lu Y, Emmanuel C, Beesley J, Johnatty SE, Chen X, Harnett P, George J, et al; Australian Ovarian Cancer Study Group. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer. J Natl Cancer Inst. 106:1062014. View Article : Google Scholar | |
Meng D, Chen Y, Zhao Y, Wang J, Yun D, Yang S, Chen J, Chen H and Lu D: Expression and prognostic significance of TCTN1 in human glioblastoma. J Transl Med. 12:2882014. View Article : Google Scholar : PubMed/NCBI | |
Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB and McDonald JF: Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics. 2:712009. View Article : Google Scholar : PubMed/NCBI | |
Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang TH, Kim S and Nephew KP: Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2:342009. View Article : Google Scholar : PubMed/NCBI | |
Peters D, Freund J and Ochs RL: Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells. Mol Cancer Ther. 4:1605–1616. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Choi EJ, Jin C and Kim DH: Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 97:26–34. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S and Ma D: Effect of tumor suppressor gene PTEN on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett. 271:260–271. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Fraser M, Qiu Q and Tsang BK: Over-expression of PTEN sensitizes human ovarian cancer cells to cisplatin-induced apoptosis in a p53-dependent manner. Gynecol Oncol. 102:348–355. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Wang K, Liu W and Hao Q: PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression. Biochem Biophys Res Commun. 444:141–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang X, Song X, Liu C, Shi Y, Wang Y, Afonja O, Ma C, Chen YH and Zhang L: Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo. Cancer Sci. 101:2163–2170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Bioinformatic analysis of chemokine (C-C motif) ligand 21 and SPARC-like protein 1 revealing their associations with drug resistance in ovarian cancer. Int J Oncol. 42:1305–1316. 2013.PubMed/NCBI | |
Sen T, Sen N, Noordhuis MG, Ravi R, Wu TC, Ha PK, Sidransky D and Hoque MO: OGDHL is a modifier of AKT-dependent signaling and NF-κB function. PLoS One. 7:e487702012. View Article : Google Scholar | |
Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, Li K, Fang Y, Weng D, Weng Y, et al: Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer. 11:3992011. View Article : Google Scholar : PubMed/NCBI | |
Materna V, Surowiak P, Markwitz E, Spaczynski M, Drag-Zalesinska M, Zabel M and Lage H: Expression of factors involved in regulation of DNA mismatch repair- and apoptosis pathways in ovarian cancer patients. Oncol Rep. 17:505–516. 2007.PubMed/NCBI | |
Moorehead RA and Singh G: Influence of the proto-oncogene c-fos on cisplatin sensitivity. Biochem Pharmacol. 59:337–345. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mahner S, Baasch C, Schwarz J, Hein S, Wölber L, Jänicke F and Milde-Langosch K: C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer. 99:1269–1275. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu YY, Li L, Li DR, Zhang W and Wang Q: Suppression of WWOX gene by RNA interference reverses platinum resistance acquired in SKOV3/SB cells. Zhonghua Fu Chan Ke Za Zhi. 43:854–858. 2008.In Chinese. PubMed/NCBI | |
Liu T, Zhao L, Chen W, Li Z, Hou H, Ding L and Li X: Inactivation of von Hippel-Lindau increases ovarian cancer cell aggressiveness through the HIF1α/miR-210/VMP1 signaling pathway. Int J Mol Med. 33:1236–1242. 2014.PubMed/NCBI | |
Hamada H, Hagiwara K, Nakajima T and Tsuruo T: Phosphorylation of the Mr 170,000 to 180,000 glycoprotein specific to multidrug-resistant tumor cells: Effects of verapamil, trifluoperazine, and phorbol esters. Cancer Res. 47:2860–2865. 1987.PubMed/NCBI | |
Zhao BX, Sun YB, Wang SQ, Duan L, Huo QL, Ren F and Li GF: Grape seed procyanidin reversal of P-glycoprotein associated multi-drug resistance via down-regulation of NF-κB and MAPK/ERK mediated YB-1 activity in A2780/T cells. PLoS One. 8:e710712013. View Article : Google Scholar | |
Lee LF, Haskill JS, Mukaida N, Matsushima K and Ting JP: Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the interleukin-8 promoter. Mol Cell Biol. 17:5097–5105. 1997. View Article : Google Scholar : PubMed/NCBI | |
Duan Z, Feller AJ, Penson RT, Chabner BA and Seiden MV: Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: Analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res. 5:3445–3453. 1999.PubMed/NCBI | |
Huang Y, Ju B, Tian J, Liu F, Yu H, Xiao H, Liu X, Liu W, Yao Z and Hao Q: Ovarian cancer stem cell-specific gene expression profiling and targeted drug prescreening. Oncol Rep. 31:1235–1248. 2014.PubMed/NCBI | |
Engelmann BJ, Ryan JJ and Farrell NP: Antidepressants and platinum drugs. Anticancer Res. 34:509–516. 2014.PubMed/NCBI | |
Lee CS, Kim YJ, Jang ER, Kim W and Myung SC: Fluoxetine induces apoptosis in ovarian carcinoma cell line OVCAR-3 through reactive oxygen species-dependent activation of nuclear factor-kappaB. Basic Clin Pharmacol Toxicol. 106:446–453. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hiss DC, Gabriels GA and Folb PI: Combination of tunicamycin with anticancer drugs synergistically enhances their toxicity in multidrug-resistant human ovarian cystadenocarcinoma cells. Cancer Cell Int. 7:52007. View Article : Google Scholar : PubMed/NCBI | |
Rogan AM, Hamilton TC, Young RC, Klecker RW Jr and Ozols RF: Reversal of adriamycin resistance by verapamil in human ovarian cancer. Science. 224:994–996. 1984. View Article : Google Scholar : PubMed/NCBI | |
Ozols RF: Pharmacologic reversal of drug resistance in ovarian cancer. Semin Oncol. 12(Suppl 4): 7–11. 1985.PubMed/NCBI | |
Gene Ontology consortium. http://www.geneontology.org. | |
Gamberoni G, Storari S and Volinia S: Finding biological process modifications in cancer tissues by mining gene expression correlations. BMC Bioinformatics. 7:62006. View Article : Google Scholar : PubMed/NCBI | |
Lagreid A, Hvidsten TR, Midelfart H, Komorowski J and Sandvik AK: Predicting gene ontology biological process from temporal gene expression patterns. Genome Res. 13:965–979. 2003. View Article : Google Scholar : PubMed/NCBI | |
Medical COREMINE. http://www.coremine.com/medical/. | |
Kloosterman WP and Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI | |
Croce CM and Calin GA: miRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D and Calin GA: miRNAs and their potential for use against cancer and other diseases. Future Oncol. 3:521–537. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brazil DP, Park J and Hemmings BA: PKB binding proteins. Getting in on the Akt. Cell. 111:293–303. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Jiang Y, Mu X, Xu L, Cheng W and Wang X: MiR-135a functions as a tumor suppressor in epithelial ovarian cancer and regulates HOXA10 expression. Cell Signal. 26:1420–1426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T and Nephew KP: Epigenetic resensitization to platinum in ovarian cancer. Cancer Res. 72:2197–2205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim YW, Kim EY, Jeon D, Liu JL, Kim HS, Choi JW and Ahn WS: Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. Drug Des Devel Ther. 8:293–314. 2014.PubMed/NCBI | |
Arafa SA, Zhu Q, Barakat BM, Wani G, Zhao Q, El-Mahdy MA and Wani AA: Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res. 69:8910–8917. 2009. View Article : Google Scholar | |
Lange TS, Stuckey AR, Robison K, Kim KK, Singh RK, Raker CA and Brard L: Effect of a vitamin D3 derivative (B3CD) with postulated anti-cancer activity in an ovarian cancer animal model. Invest New Drugs. 28:543–553. 2010. View Article : Google Scholar : | |
Jiao JW and Wen F: Tanshinone IIA acts via p38 MAPK to induce apoptosis and the down-regulation of ERCC1 and lung-resistance protein in cisplatin-resistant ovarian cancer cells. Oncol Rep. 25:781–788. 2011. | |
Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK and Kakar SS: MicroRNA signature of cis-platin resistant vs. cisplatin sensitive ovarian cancer cell lines. J Ovarian Res. 4:172011. View Article : Google Scholar | |
Jin L, Huo Y, Zheng Z, Jiang X and Deng H, Chen Y, Lian Q, Ge R and Deng H: Down-regulation of Ras-related protein Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines. Mol Cell Proteomics. 13:3138–3151. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M and Tian Y: Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep. 32:979–988. 2014.PubMed/NCBI | |
Rosanò L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Caprara V, Semprucci E, Ferrandina G, Natali PG and Bagnato A: Endothelin A receptor/β-arrestin signaling to the Wnt pathway renders ovarian cancer cells resistant to chemotherapy. Cancer Res. 74:7453–7464. 2014. View Article : Google Scholar | |
Ko MA, Zehong G, Virtanen C, Guindi M, Waddell TK, Keshavjee S, et al: MicroRNA expression profiling of esophageal cancer before and after induction chemoradiotherapy. Ann Thorac Surg. 94:1094–1102; discussion 1102–1093. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang FJ, Ding Y, Mao YY, Jing FY, Zhang ZY, Jiang LF, Guo JF, Sun XJ, Jin MJ and Chen K: Associations between hsa-miR-603 polymorphism, lifestyle-related factors and colorectal cancer risk. Cancer Biomark. 14:225–231. 2014.PubMed/NCBI | |
Rogler A, Hoja S, Socher E, Nolte E, Wach S, Wieland W, Hofstädter F, Goebell PJ, Wullich B, Hartmann A, et al: Role of two single nucleotide polymorphisms in secreted frizzled related protein 1 and bladder cancer risk. Int J Clin Exp Pathol. 6:1984–1998. 2013.PubMed/NCBI | |
Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X and Yin H: Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 399:1–6. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B, Shu Y and Liu P: miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol. 29:384–391. 2012. View Article : Google Scholar | |
Della Vittoria Scarpati G, Falcetta F, Carlomagno C, Ubezio P, Marchini S, De Stefano A, Singh VK, D'Incalci M, De Placido S and Pepe S: A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 83:1113–1119. 2012. View Article : Google Scholar | |
Tang J, Tao ZH, Wen D, Wan JL, Liu DL, Zhang S, Cui JF, Sun HC, Wang L, Zhou J, et al: MiR-612 suppresses the stemness of liver cancer via Wnt/β-catenin signaling. Biochem Biophys Res Commun. 447:210–215. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Li H, Hou S, Hu B, Liu J and Wang J: The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One. 8:e653092013. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G and Shimizu K: Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS One. 7:e314222012. View Article : Google Scholar : PubMed/NCBI | |
Gu YF, Zhang H, Su D, Mo ML, Song P, Zhang F and Zhang SC: miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chin Med J (Engl). 126:4435–4439. 2013. | |
Pichiorri F, Palmieri D, De Luca L, Consiglio J, You J, Rocci A, Talabere T, Piovan C, Lagana A, Cascione L, et al: In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med. 210:951–968. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang JW, Wang Y, Dhillon KK, Calses P, Villegas E, Mitchell PS, Tewari M, Kemp CJ and Taniguchi T: Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Mol Cancer Res. 11:1564–1573. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang N, Shah PK and Li C: Lessons from a decade of integrating cancer copy number alterations with gene expression profiles. Brief Bioinform. 13:305–316. 2012. View Article : Google Scholar : | |
McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K, et al; Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar | |
Sharan R, Ulitsky I and Shamir R: Network-based prediction of protein function. Mol Syst Biol. 3:882007. View Article : Google Scholar : PubMed/NCBI | |
Phuong T and Nhung N: Predicting gene function using similarity learning. BMC Genomics. 14(Suppl 4): S42013. View Article : Google Scholar : PubMed/NCBI | |
Janga SC, Díaz-Mejía JJ and Moreno-Hagelsieb G: Network-based function prediction and interactomics: The case for metabolic enzymes. Metab Eng. 13:1–10. 2011. View Article : Google Scholar | |
Yu G, Zhu H, Domeniconi C and Guo M: Integrating multiple networks for protein function prediction. BMC Syst Biol. 9(Suppl 1): S32015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Gao Y, Lu Y, Zhang J, Li L and Yin F: Downregulation of NEK11 is associated with drug resistance in ovarian cancer. Int J Oncol. 45:1266–1274. 2014.PubMed/NCBI | |
Liu X, Gao Y, Lu Y, Zhang J, Li L and Yin F: Upregulation of NEK2 is associated with drug resistance in ovarian cancer. Oncol Rep. 31:745–754. 2014. | |
Yin F, Liu L, Liu X, Li G, Zheng L, Li D, Wang Q, Zhang W and Li L: Downregulation of tumor suppressor gene ribonuclease T2 and gametogenetin binding protein 2 is associated with drug resistance in ovarian cancer. Oncol Rep. 32:362–372. 2014.PubMed/NCBI | |
Zeng X, Yin F, Liu X, Xu J, Xu Y, Huang J, Nan Y and Qiu X: Upregulation of E2F transcription factor 3 is associated with poor prognosis in hepatocellular carcinoma. Oncol Rep. 31:1139–1146. 2014.PubMed/NCBI | |
Liu J, Wang LY, Yang AJ, Jiang PF and Wang MC: Up-regulation of SALL4 associated with poor prognosis in gastric cancer. Hepatogastroenterology. 61:1459–1464. 2014.PubMed/NCBI | |
Jaber N, Dou Z, Lin RZ, Zhang J and Zong WX: Mammalian PIK3C3/VPS34: The key to autophagic processing in liver and heart. Autophagy. 8:707–708. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang ZJ, Chee CE, Huang S and Sinicrope FA: The role of autophagy in cancer: Therapeutic implications. Mol Cancer Ther. 10:1533–1541. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peracchio C, Alabiso O, Valente G and Isidoro C: Involvement of autophagy in ovarian cancer: A working hypothesis. J Ovarian Res. 5:222012. View Article : Google Scholar : PubMed/NCBI | |
Wang J and Wu GS: Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem. 289:17163–17173. 2014. View Article : Google Scholar : PubMed/NCBI | |
Veldhoen RA, Banman SL, Hemmerling DR, Odsen R, Simmen T, Simmonds AJ, Underhill DA and Goping IS: The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis. Oncogene. 32:736–746. 2013. View Article : Google Scholar |