Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review)
- Authors:
- Yu-Feng Xiao
- Xin Yong
- Bo Tang
- Yong Qin
- Jian-Wei Zhang
- Dan Zhang
- Rui Xie
- Shi-Ming Yang
-
Affiliations: Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China - Published online on: December 7, 2015 https://doi.org/10.3892/ijo.2015.3280
- Pages: 437-449
This article is mentioned in:
Abstract
Ramdass B, Duggal R, Minev B, Chowdhary A, Ramdass B, Duggal R, Minev B, Chowdhary A and Koka P: Functional role of solid tumor stem cells in disease etiology and susceptibility to therapeutic interventions. J Stem Cells. 8:189–231. 2013. | |
Chung E and Kondo M: Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res. 49:248–268. 2011. View Article : Google Scholar | |
Knight T and Irving JA: Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol. 4:1602014. View Article : Google Scholar : PubMed/NCBI | |
Monga SP: Role and regulation of β-catenin signaling during physiological liver growth. Gene Expr. 16:51–62. 2014. View Article : Google Scholar | |
Andersson ER and Lendahl U: Therapeutic modulation of Notch signalling: are we there yet? Nat Rev Drug Discov. 13:357–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pasillas MP, Shields S, Reilly R, Strnadel J, Behl C, Park R, Yates JR III, Klemke R, Gonias SL and Coppinger JA: Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation. Mol Cell Proteomics. 14:1–14. 2015. View Article : Google Scholar : | |
Shi X, Wu S, Yang Y, Tang L, Wang Y, Dong J, Lü B, Jiang G and Zhao W: AQP5 silencing suppresses p38 MAPK signaling and improves drug resistance in colon cancer cells. Tumour Biol. 35:7035–7045. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu SL, Lee DC, Son JW, Park CG, Lee HY and Kang J: Histone deacetylase 4 mediates SMAD family member 4 deacetylation and induces 5-fluorouracil resistance in breast cancer cells. Oncol Rep. 30:1293–1300. 2013.PubMed/NCBI | |
Jiang AG, Yu H and Huang JA: Expression and clinical significance of the phosphatidylinositol 3-kinase/protein kinase B signal transduction pathway in non-small cell lung carcinoma. Oncol Lett. 8:601–607. 2014.PubMed/NCBI | |
Ogawa R, Ishiguro H, Kimura M, Funahashi H, Wakasugi T, Ando T, Shiozaki M and Takeyama H: NOTCH1 expression predicts patient prognosis in esophageal squamous cell cancer. Eur Surg Ress. 51:101–107. 2013. View Article : Google Scholar | |
Chu W, Song X, Yang X, Ma L, Zhu J, He M, Wang Z and Wu Y: Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma. PLoS One. 9:e1019312014. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Sun B, Zhao X, Zhao X, Gu Q, Dong X, Zheng Y, Sun J, Cheng R, Qi H, et al: Overexpression of Wnt5a promotes angiogenesis in NSCLC. BioMed Res Int. 2014:8325622014. View Article : Google Scholar : PubMed/NCBI | |
Carvalho FL, Simons BW, Eberhart CG and Berman DM: Notch signaling in prostate cancer: A moving target. Prostate. 74:933–945. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jamieson C, Sharma M and Henderson BR: Targeting the β-catenin nuclear transport pathway in cancer. Semin Cancer Biol. 27:20–29. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gasparini C, Celeghini C, Monasta L and Zauli G: NF-kappaB pathways in hematological malignancies. Cellular and molecular life sciences. Cell Mol Life Sci. 71:2083–2102. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tournier C: The 2 Faces of JNK Signaling in Cancer. Genes Cancer. 4:397–400. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ntziachristos P, Lim JS, Sage J and Aifantis I: From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell. 25:318–334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Okajima T and Irvine KD: Regulation of notch signaling by o-linked fucose. Cell. 111:893–904. 2002. View Article : Google Scholar | |
Haines N and Irvine KD: Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol. 4:786–797. 2003. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Liu M and Gonzalez-Perez RR: Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta. 1815:197–213. 2011.PubMed/NCBI | |
Lai EC: Notch signaling: Control of cell communication and cell fate. Development. 131:965–973. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D and Sarkar FH: Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 1806:258–267. 2010.PubMed/NCBI | |
Kopan R and Ilagan MX: The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell. 137:216–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Louvi A and Artavanis-Tsakonas S: Notch and disease: A growing field. Semin Cell Dev Biol. 23:473–480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rizzo P, Osipo C, Foreman K, Golde T, Osborne B and Miele L: Rational targeting of Notch signaling in cancer. Oncogene. 27:5124–5131. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y and Sarkar FH: Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 66:2778–2784. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang Y, Li Y, Banerjee S, Liao J and Sarkar FH: Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 5:483–493. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zavadil J, Cermak L, Soto-Nieves N and Böttinger EP: Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23:1155–1165. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, et al: IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 117:3988–4002. 2007. View Article : Google Scholar : PubMed/NCBI | |
Patel NS, Li JL, Generali D, Poulsom R, Cranston DW and Harris AL: Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65:8690–8697. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lawson ND, Vogel AM and Weinstein BM: sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell. 3:127–136. 2002. View Article : Google Scholar : PubMed/NCBI | |
South AP, Cho RJ and Aster JC: The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol. 23:458–464. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD and Sklar J: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 66:649–661. 1991. View Article : Google Scholar : PubMed/NCBI | |
Capobianco AJ, Zagouras P, Blaumueller CM, Artavanis-Tsakonas S and Bishop JM: Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol. 17:6265–6273. 1997. View Article : Google Scholar : PubMed/NCBI | |
Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, Kozak CA and Jolicoeur P: Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 10:1930–1944. 1996. View Article : Google Scholar : PubMed/NCBI | |
Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster JC: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 306:269–271. 2004. View Article : Google Scholar : PubMed/NCBI | |
Radtke F, Wilson A, Mancini SJ and MacDonald HR: Notch regulation of lymphocyte development and function. Nat Immunol. 5:247–253. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoyne GF: Notch signaling in the immune system. J Leukoc Biol. 74:971–981. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sulis ML, Williams O, Palomero T, Tosello V, Pallikuppam S, Real PJ, Barnes K, Zuurbier L, Meijerink JP and Ferrando AA: NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood. 112:733–740. 2008. View Article : Google Scholar : PubMed/NCBI | |
Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G, Happich M, Muckenthaler MU and Kulozik AE: Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 108:1151–1157. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, Suzuki N, Hara J, Horibe K and Hayashi Y: FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 145:198–206. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G, Kaltenbach S, Yakouben K, Mazingue F, Robert A, et al; EORTC-CLG. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia. 24:2023–2031. 2010. View Article : Google Scholar : PubMed/NCBI | |
Weissmann S, Roller A, Jeromin S, Hernández M, Abáigar M, Hernández-Rivas JM, Grossmann V, Haferlach C, Kern W, Haferlach T, et al: Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): A study on 852 patients. Leukemia. 27:2393–2396. 2013. View Article : Google Scholar : PubMed/NCBI | |
Di Ianni M, Baldoni S, Rosati E, Ciurnelli R, Cavalli L, Martelli MF, Marconi P, Screpanti I and Falzetti F: A new genetic lesion in B-CLL: A NOTCH1 PEST domain mutation. Br J Haematol. 146:689–691. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sportoletti P, Baldoni S, Cavalli L, Del Papa B, Bonifacio E, Ciurnelli R, Bell AS, Di Tommaso A, Rosati E, Crescenzi B, et al: NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br J Haematol. 151:404–406. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wickremasinghe RG, Prentice AG and Steele AJ: p53 and Notch signaling in chronic lymphocytic leukemia: Clues to identifying novel therapeutic strategies. Leukemia. 25:1400–1407. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, Marasca R, Laurenti L, Bruscaggin A, Cerri M, et al: Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 119:521–529. 2012. View Article : Google Scholar : | |
Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, et al: Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 209:1553–1565. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G, Nannya Y, Suzuki R, Ota S, Ota Y, et al: Gainof-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 100:920–926. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Famà R, et al: The coding genome of splenic marginal zone lymphoma: Activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 209:1537–1551. 2012. View Article : Google Scholar : PubMed/NCBI | |
Uyttendaele H, Soriano JV, Montesano R and Kitajewski J: Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol. 196:204–217. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bellavia D, Checquolo S, Campese AF, Felli MP, Gulino A and Screpanti I: Notch3: From subtle structural differences to functional diversity. Oncogene. 27:5092–5098. 2008. View Article : Google Scholar : PubMed/NCBI | |
Melchor L and Smalley MJ: Highway to heaven: Mammary gland development and differentiation. Breast Cancer Res. 10:3052008. View Article : Google Scholar : PubMed/NCBI | |
Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, et al: Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 8:979–986. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Diévart A, Lupien M, Calvo E, Tremblay G and Jolicoeur P: Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 168:973–990. 2006. View Article : Google Scholar : PubMed/NCBI | |
Imatani A and Callahan R: Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene. 19:223–231. 2000. View Article : Google Scholar : PubMed/NCBI | |
Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G and Egan SE: High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65:8530–8537. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P and Hauschka PV: Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol. 177:1459–1469. 2010. View Article : Google Scholar : PubMed/NCBI | |
Parr C, Watkins G and Jiang WG: The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med. 14:779–786. 2004.PubMed/NCBI | |
Baumgart A, Mazur PK, Anton M, Rudelius M, Schwamborn K, Feuchtinger A, Behnke K, Walch A, Braren R, Peschel C, et al: Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene. 34:578–588. 2015. View Article : Google Scholar | |
Yang Y, Yan X, Duan W, Yan J, Yi W, Liang Z, Wang N, Li Y, Chen W, Yu S, et al: Pterostilbene exerts antitumor activity via the Notch1 signaling pathway in human lung adenocarcinoma cells. PLoS One. 8:e626522013. View Article : Google Scholar : PubMed/NCBI | |
Licciulli S, Avila JL, Hanlon L, Troutman S, Cesaroni M, Kota S, Keith B, Simon MC, Puré E, Radtke F, et al: Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Res. 73:5974–5984. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie M, He CS, Wei SH and Zhang L: Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo. Eur J Cancer. 49:3559–3572. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hassan KA, Wang L, Korkaya H, Chen G, Maillard I, Beer DG, Kalemkerian GP and Wicha M: Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 19:1972–1980. 2013. View Article : Google Scholar : PubMed/NCBI | |
Theys J, Yahyanejad S, Habets R, Span P, Dubois L, Paesmans K, Kattenbeld B, Cleutjens J, Groot AJ, Schuurbiers OC, et al: High NOTCH activity induces radiation resistance in non small cell lung cancer. Radiother Oncol. 108:440–445. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wael H, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K and Ito T: Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer. 85:131–140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Song H, Liu B, Yu B, Wang R and Chen L: Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. J Exp Clin Cancer Res. 32:842013. View Article : Google Scholar : | |
Zhou M, Jin WY, Fan ZW and Han RC: Analysis of the expression of the Notch3 receptor protein in adult lung cancer. Oncol Lett. 5:499–504. 2013.PubMed/NCBI | |
Ye YZ, Zhang ZH, Fan XY, Xu XL, Chen ML, Chang BW and Zhang YB: Notch3 overexpression associates with poor prognosis in human non-small-cell lung cancer. Med Oncol. 30:5952013. View Article : Google Scholar : PubMed/NCBI | |
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yeh TS, Wu CW, Hsu KW, Liao WJ, Yang MC, Li AF, Wang AM, Kuo ML and Chi CW: The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Res. 69:5039–5048. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yao J and Qian C: Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFalpha-induced apoptosis. Dig Liver Dis. 41:867–874. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carson C, Murdoch B and Roskams AJ: Notch 2 and Notch 1/3 segregate to neuronal and glial lineages of the developing olfactory epithelium. Dev Dyn. 235:1678–1688. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Gao X, Liu J, Kong QY, Wang XW, Chen XY, Wang Q, Cheng YF, Qu XX and Li H: Differential Notch1 and Notch2 expression and frequent activation of Notch signaling in gastric cancers. Arch Pathol Lab Med. 135:451–458. 2011.PubMed/NCBI | |
Tseng YC, Tsai YH, Tseng MJ, Hsu KW, Yang MC, Huang KH, Li AF, Chi CW, Hsieh RH, Ku HH, et al: Notch2-induced COX-2 expression enhancing gastric cancer progression. Mol Carcinog. 51:939–951. 2012. View Article : Google Scholar | |
Guo LY, Li YM, Qiao L, Liu T, Du YY, Zhang JQ, He WT, Zhao YX and He DQ: Notch2 regulates matrix metallopeptidase 9 via PI3K/AKT signaling in human gastric carcinoma cell MKN-45. World J Gastroenterol. 18:7262–7270. 2012. View Article : Google Scholar | |
Piazzi G, Fini L, Selgrad M, Garcia M, Daoud Y, Wex T, Malfertheiner P, Gasbarrini A, Romano M, Meyer RL, et al: Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer. Oncotarget. 2:1291–1301. 2011. View Article : Google Scholar | |
Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J and Radtke F: Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology. 140:1230–1240.e7. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li GG, Li L, Li C, Ye LY, Li XW, Liu DR, Bao Q, Zheng YX, Xiang DP, Chen L, et al: Influence of up-regulation of Notch ligand DLL4 on biological behaviors of human gastric cancer cells. World J Gastroenterol. 19:4486–4494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun HW, Wu C, Tan HY and Wang QS: Combination DLL4 with Jagged1-siRNA can enhance inhibition of the proliferation and invasiveness activity of human gastric carcinoma by Notch1/VEGF pathway. Hepatogastroenterology. 59:924–929. 2012. | |
Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rosenbluh J, Wang X and Hahn WC: Genomic insights into WNT/β-catenin signaling. Trends Pharmacol Sci. 35:103–109. 2014. View Article : Google Scholar : | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Niehrs C: The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 13:767–779. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang JM, Huang FC, Kuo MH, Wang ZF, Tseng TY, Chang LC, Yen SJ, Chang TC and Lin JJ: Inhibition of cancer cell migration and invasion through suppressing the Wnt1-mediating signal pathway by G-quadruplex structure stabilizers. J Biol Chem. 289:14612–14623. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee MA, Park JH, Rhyu SY, Oh ST, Kang WK and Kim HN: Wnt3a expression is associated with MMP-9 expression in primary tumor and metastatic site in recurrent or stage IV colorectal cancer. BMC Cancer. 14:1252014. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Li N, Wei Y, Li QR and Yu ZP: β-catenin deacetylation is essential for WNT-induced proliferation of breast cancer cells. Mol Med Rep. 9:973–978. 2014.PubMed/NCBI | |
Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y and Li J: Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie. 95:2326–2335. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arend RC, Londoño-Joshi AI, Straughn JM Jr and Buchsbaum DJ: The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol Oncol. 131:772–779. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holland JD, Klaus A, Garratt AN and Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barbolina MV, Burkhalter RJ and Stack MS: Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochem J. 437:1–12. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andersen P, Uosaki H, Shenje LT and Kwon C: Non-canonical Notch signaling: Emerging role and mechanism. Trends Cell Biol. 22:257–265. 2012. View Article : Google Scholar : PubMed/NCBI | |
Clark CE, Nourse CC and Cooper HM: The tangled web of non-canonical Wnt signalling in neural migration. Neurosignals. 20:202–220. 2012. View Article : Google Scholar : PubMed/NCBI | |
González-Sancho JM, Brennan KR, Castelo-Soccio LA and Brown AM: Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol. 24:4757–4768. 2004. View Article : Google Scholar | |
Beier F and Loeser RF: Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem. 110:573–580. 2010. View Article : Google Scholar : PubMed/NCBI | |
Asad M, Wong MK, Tan TZ, Choolani M, Low J, Mori S, Virshup D, Thiery JP and Huang RY: FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis. 5:e13462014. View Article : Google Scholar : PubMed/NCBI | |
Bernemann C, Hülsewig C, Ruckert C, Schäfer S, Blümel L, Hempel G, Götte M, Greve B, Barth PJ, Kiesel L, et al: Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on WNT signaling. Mol Cancer. 13:1742014. View Article : Google Scholar : PubMed/NCBI | |
Xi Y and Chen Y: Wnt signaling pathway: Implications for therapy in lung cancer and bone metastasis. Cancer Lett. 353:8–16. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nejak-Bowen KN and Monga SP: Beta-catenin signaling, liver regeneration and hepatocellular cancer: Sorting the good from the bad. Semin Cancer Biol. 21:44–58. 2011. View Article : Google Scholar : | |
Colussi D, Brandi G, Bazzoli F and Ricciardiello L: Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int J Mol Sci. 14:16365–16385. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C and Merle P: Wnt signaling and hepatocarcinogenesis: Molecular targets for the development of innovative anticancer drugs. J Hepatol. 59:1107–1117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Armengol C, Cairo S, Fabre M and Buendia MA: Wnt signaling and hepatocarcinogenesis: The hepatoblastoma model. Int J Biochem Cell Biol. 43:265–270. 2011. View Article : Google Scholar | |
Gedaly R, Galuppo R, Daily MF, Shah M, Maynard E, Chen C, Zhang X, Esser KA, Cohen DA, Evers BM, et al: Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One. 9:e992722014. View Article : Google Scholar | |
Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, Hu H, Guan W and Ma Y: Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumour Biol. 35:1239–1250. 2014. View Article : Google Scholar | |
Zucchini-Pascal N, Peyre L and Rahmani R: Crosstalk between beta-catenin and snail in the induction of epithelial to mesenchymal transition in hepatocarcinoma: Role of the ERK1/2 pathway. Int J Mol Sci. 14:20768–20792. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bustos VH, Ferrarese A, Venerando A, Marin O, Allende JE and Pinna LA: The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1. Proc Natl Acad Sci USA. 103:19725–19730. 2006. View Article : Google Scholar : PubMed/NCBI | |
Singh Y, Port J, Schwarz M and Braeuning A: Genetic ablation of β-catenin inhibits the proliferative phenotype of mouse liver adenomas. Br J Cancer. 111:132–138. 2014. View Article : Google Scholar : PubMed/NCBI | |
Calderaro J, Nault JC, Bioulac-Sage P, Laurent A, Blanc JF, Decaens T and Zucman-Rossi J: ALDH3A1 is overexpressed in a subset of hepatocellular carcinoma characterised by activation of the Wnt/ss-catenin pathway. Virchows Arch. 464:53–60. 2014. View Article : Google Scholar | |
Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K and Tsukamoto H: Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 294:G39–G49. 2008. View Article : Google Scholar | |
Li W, Zhu C, Li Y, Wu Q and Gao R: Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/β-catenin signaling pathway. Gut Liver. 8:282–291. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tenesa A and Dunlop MG: New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 10:353–358. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pandurangan AK: Potential targets for prevention of colorectal cancer: A focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev. 14:2201–2205. 2013. View Article : Google Scholar : PubMed/NCBI | |
Curtin JC: Novel drug discovery opportunities for colorectal cancer. Expert Opin Drug Discov. 8:1153–1164. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sparks AB, Morin PJ, Vogelstein B and Kinzler KW: Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58:1130–1134. 1998.PubMed/NCBI | |
Murakami T, Mitomi H, Saito T, Takahashi M, Sakamoto N, Fukui N, Yao T and Watanabe S: Distinct WNT/beta-catenin signaling activation in the serrated neoplasia pathway and the adenoma-carcinoma sequence of the colorectum. Mod Pathol. 28:146–158. 2015. View Article : Google Scholar | |
Raghu D and Karunagaran D: Plumbagin downregulates Wnt signaling independent of p53 in human colorectal cancer cells. J Nat Prod. 77:1130–1134. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tai WP, Hu PJ, Wu J and Lin XC: The inhibition of Wnt/β-catenin signaling pathway in human colon cancer cells by sulindac. Tumori. 100:97–101. 2014.PubMed/NCBI | |
Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O, et al: Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther. 13:812–822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bruun J, Kolberg M, Nesland JM, Svindland A, Nesbakken A and Lothe RA: Prognostic Significance of β-catenin, E-cadherin, and SOX9 in colorectal cancer: Results from a large population-representative series. Front Oncol. 4:1182014. View Article : Google Scholar | |
Voorham QJ, Janssen J, Tijssen M, Snellenberg S, Mongera S, van Grieken NC, Grabsch H, Kliment M, Rembacken BJ, Mulder CJ, et al: Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas. BMC Cancer. 13:6032013. View Article : Google Scholar : PubMed/NCBI | |
Serafino A, Moroni N, Zonfrillo M, Andreola F, Mercuri L, Nicotera G, Nunziata J, Ricci R, Antinori A, Rasi G, et al: WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget. 5:978–992. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abdelmaksoud-Dammak R, Miladi-Abdennadher I, Saadallah-Kallel A, Khabir A, Sellami-Boudawara T, Frikha M, Daoud J and Mokdad-Gargouri R: Downregulation of WIF-1 and Wnt5a in patients with colorectal carcinoma: clinical significance. Tumour Biol. 35:7975–7982. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bauer M, Bénard J, Gaasterland T, Willert K and Cappellen D: WNT5A encodes two isoforms with distinct functions in cancers. PLoS One. 8:e805262013. View Article : Google Scholar : PubMed/NCBI | |
Chai J, Modak C, Ouyang Y, Wu SY and Jamal MM: CCN1 Induces β-catenin translocation in esophageal squamous cell carcinoma through integrin α11. ISRN Gastroenterol. 2012:2072352012. View Article : Google Scholar | |
Moyes LH, McEwan H, Radulescu S, Pawlikowski J, Lamm CG, Nixon C, Sansom OJ, Going JJ, Fullarton GM and Adams PD: Activation of Wnt signalling promotes development of dysplasia in Barrett's oesophagus. J Pathol. 228:99–112. 2012.PubMed/NCBI | |
Long A, Giroux V, Whelan KA, Hamilton KE, Tétreault MP, Tanaka K, Lee JS, Klein-Szanto AJ, Nakagawa H and Rustgi AK: WNT10A promotes an invasive and self-renewing phenotype in esophageal squamous cell carcinoma. Carcinogenesis. 36:598–606. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang SH, Li SL, Dong ZM and Kan QC: Epigenetic inactivation of Wnt inhibitory factor-1 in human esophageal squamous cell carcinoma. Oncol Res. 20:123–130. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ge XS, Ma HJ, Zheng XH, Ruan HL, Liao XY, Xue WQ, Chen YB, Zhang Y and Jia WH: HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci. 104:1675–1682. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Luo Y, Tian H, Yu KZ, He JX and Shen WY: The tumor suppressor LKB1 antagonizes WNT signaling pathway through modulating GSK3beta activity in cell growth of esophageal carcinoma. Tumour Biol. 35:995–1002. 2014. View Article : Google Scholar | |
Tong X, Li L, Li X, Heng L, Zhong L, Su X, Rong R, Hu S, Liu W, Jia B, et al: SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget. 5:10571–10583. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuramoto T, Goto H, Mitsuhashi A, Tabata S, Ogawa H, Uehara H, Saijo A, Kakiuchi S, Maekawa Y, Yasutomo K, et al: Dll4-Fc, an inhibitor of Dll4-notch signaling, suppresses liver metastasis of small cell lung cancer cells through the downregulation of the NF-κB activity. Mol Cancer Ther. 11:2578–2587. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stewart KS, Zhou Z, Zweidler-McKay P and Kleinerman ES: Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood. 117:719–726. 2011. View Article : Google Scholar : | |
Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, et al: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 444:1083–1087. 2006. View Article : Google Scholar : PubMed/NCBI | |
Oishi H, Sunamura M, Egawa S, Motoi F, Unno M, Furukawa T, Habib NA and Yagita H: Blockade of delta-like ligand 4 signaling inhibits both growth and angiogenesis of pancreatic cancer. Pancreas. 39:897–903. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gurney A and Hoey T: Anti-DLL4, a cancer therapeutic with multiple mechanisms of action. Vasc Cell. 3:182011. View Article : Google Scholar : PubMed/NCBI | |
Fischer M, Yen WC, Kapoun AM, Wang M, O'Young G, Lewicki J, Gurney A and Hoey T: Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res. 71:1520–1525. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jenkins DW, Ross S, Veldman-Jones M, Foltz IN, Clavette BC, Manchulenko K, Eberlein C, Kendrew J, Petteruti P, Cho S, et al: MEDI0639: A novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo. Mol Cancer Ther. 11:1650–1660. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu SK, Bham SA, Fokas E, Beech J, Im J, Cho S, Harris AL and Muschel RJ: Delta-like ligand 4-notch blockade and tumor radiation response. J Natl Cancer Inst. 103:1778–1798. 2011. View Article : Google Scholar : PubMed/NCBI | |
El Kaffas A, Nofiele J, Giles A, Cho S, Liu SK and Czarnota GJ: Dll4-notch signalling blockade synergizes combined ultrasound-stimulated microbubble and radiation therapy in human colon cancer xenografts. PLoS One. 9:e938882014. View Article : Google Scholar : PubMed/NCBI | |
Aste-Amézaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M, Huang L, Vitelli S, Vo KT, Haytko P, et al: Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One. 5:e90942010. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Paranjape AN, Rangarajan A and Dighe RR: A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther. 11:77–86. 2012. View Article : Google Scholar | |
Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K and Plowman GD: Chronic DLL4 blockade induces vascular neoplasms. Nature. 463:E6–E7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rosati E, Sabatini R, De Falco F, Del Papa B, Falzetti F, Di Ianni M, Cavalli L, Fettucciari K, Bartoli A, Screpanti I, et al: gamma-Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch down-regulation. Int J Cancer. 132:1940–1953. 2013. View Article : Google Scholar | |
Palagani V, El Khatib M, Kossatz U, Bozko P, Müller MR, Manns MP, Krech T, Malek NP and Plentz RR: Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by γ-secretase inhibitor IX. PLoS One. 7:e465142012. View Article : Google Scholar | |
Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, et al: Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res. 19:1512–1524. 2013. View Article : Google Scholar : PubMed/NCBI | |
López-Guerra M, Xargay-Torrent S, Rosich L, Montraveta A, Roldán J, Matas-Céspedes A, Villamor N, Aymerich M, López-Otín C, Pérez-Galán P, et al: The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells. Leukemia. 29:96–106. 2015. View Article : Google Scholar | |
Saito N, Fu J, Zheng S, Yao J, Wang S, Liu DD, Yuan Y, Sulman EP, Lang FF, Colman H, et al: A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells. Stem Cells. 32:301–312. 2014. View Article : Google Scholar : | |
Groeneweg JW, Hall TR, Zhang L, Kim M, Byron VF, Tambouret R, Sathayanrayanan S, Foster R, Rueda BR and Growdon WB: Inhibition of gamma-secretase activity impedes uterine serous carcinoma growth in a human xenograft model. Gynecol Oncol. 133:607–615. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li LC, Peng Y, Liu YM, Wang LL and Wu XL: Gastric cancer cell growth and epithelial-mesenchymal transition are inhibited by γ-secretase inhibitor DAPT. Oncol Lett. 7:2160–2164. 2014.PubMed/NCBI | |
Dahmani R, Just PA and Perret C: The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 35:709–713. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, Bone B, Ketelsen D, Santos C, et al: A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther. 12:685–695. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Shek FH, Wong KF, Liu LX, Zhang XQ, Yuan Y, Khin E, Hu MY, Wang JH, Poon RT, et al: Anti-cadherin-17 antibody modulates beta-catenin signaling and tumorigenicity of hepatocellular carcinoma. PLoS One. 8:e723862013. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Kim H, Feng M, Phung Y, Xavier CP, Rubin JS and Ho M: Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology. 60:576–587. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ettenberg SA, Charlat O, Daley MP, Liu S, Vincent KJ, Stuart DD, Schuller AG, Yuan J, Ospina B, Green J, et al: Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies. Proc Natl Acad Sci USA. 107:15473–15478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Bourhis E, Chiu C, Stawicki S, DeAlmeida VI, Liu BY, Phamluong K, Cao TC, Carano RA, Ernst JA, et al: Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS One. 5:e126822010. View Article : Google Scholar : PubMed/NCBI | |
Lavergne E, Hendaoui I, Coulouarn C, Ribault C, Leseur J, Eliat PA, Mebarki S, Corlu A, Clément B and Musso O: Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active β-catenin. Oncogene. 30:423–433. 2011. View Article : Google Scholar | |
Wei W, Chua MS, Grepper S and So SK: Soluble Frizzled-7 receptor inhibits Wnt signaling and sensitizes hepatocellular carcinoma cells towards doxorubicin. Mol Cancer. 10:162011. View Article : Google Scholar : PubMed/NCBI | |
Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA and Abreu JG: Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. Int J Mol Sci. 15:12094–12106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, Sun J, Cai J, Qin J, Ren J, et al: Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. 8:e787002013. View Article : Google Scholar | |
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009. View Article : Google Scholar : PubMed/NCBI | |
Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, Paulsen JE, Pedersen NM, Eide TJ, Machonova O, et al: A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 72:2822–2832. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F and Ishibashi M: Calotropin: A cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. Chem Bio Chem. 15:872–878. 2014. View Article : Google Scholar | |
Li B, Flaveny CA, Giambelli C, Fei DL, Han L, Hang BI, Bai F, Pei XH, Nose V, Burlingame O, et al: Repurposing the FDA-approved pinworm drug pyrvinium as a novel chemotherapeutic agent for intestinal polyposis. PLoS One. 9:e1019692014. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Chua MS, Grepper S and So S: Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer. 126:2426–2436. 2010. | |
Lee SB, Gong YD, Park YI and Dong MS: 2,3,6-Trisubstituted quinoxaline derivative, a small molecule inhibitor of the Wnt/beta-catenin signaling pathway, suppresses cell proliferation and enhances radiosensitivity in A549/Wnt2 cells. Biochem Biophys Res Commun. 431:746–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD and Kundu CN: Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis. 34:277–286. 2013. View Article : Google Scholar | |
Park S and Chun S: Streptonigrin inhibits β-catenin/Tcf signaling and shows cytotoxicity in β-catenin-activated cells. Biochim Biophys Acta. 1810:1340–1345. 2011. View Article : Google Scholar : PubMed/NCBI | |
Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, et al: A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA. 101:12682–12687. 2004. View Article : Google Scholar | |
Yu SD, Liu FY and Wang QR: Notch inhibitor: A promising carcinoma radiosensitizer. Asian Pac J Cancer Prev. 13:5345–5351. 2012. View Article : Google Scholar | |
Wei W, Chua MS, Grepper S and So SK: Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer. 8:762009. View Article : Google Scholar : PubMed/NCBI | |
Mazieres J, You L, He B, Xu Z, Twogood S, Lee AY, Reguart N, Batra S, Mikami I and Jablons DM: Wnt2 as a new therapeutic target in malignant pleural mesothelioma. Int J Cancer. 117:326–332. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pode-Shakked N, Harari-Steinberg O, Haberman-Ziv Y, Rom-Gross E, Bahar S, Omer D, Metsuyanim S, Buzhor E, Jacob-Hirsch J, Goldstein RS, et al: Resistance or sensitivity of Wilms' tumor to anti-FZD7 antibody highlights the Wnt pathway as a possible therapeutic target. Oncogene. 30:1664–1680. 2011. View Article : Google Scholar : PubMed/NCBI |