1
|
Liu RH: Potential synergy of
phytochemicals in cancer prevention: Mechanism of action. J Nutr.
134(Suppl): 3479S–3485S. 2004.PubMed/NCBI
|
2
|
Surh YJ: Cancer chemoprevention with
dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kornberg A and Baker TA: DNA replication.
2nd edition. W.D. Freeman and Co; New York: pp. 197–225. 1992
|
4
|
Hubscher U, Maga G and Spadari S:
Eukaryotic DNA polymerases. Annu Rev Biochem. 71:133–163. 2002.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Bebenek K and Kunkel TA: DNA repair and
replication. Advances in Protein Chemistry. Yang W: Elsevier; San
Diego: pp. 137–165. 2004, View Article : Google Scholar
|
6
|
Lange SS, Takata K and Wood RD: DNA
polymerases and cancer. Nat Rev Cancer. 11:96–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Loeb LA and Monnat RJ Jr: DNA polymerases
and human disease. Nat Rev Genet. 9:594–604. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang JC: DNA topoisomerases. Annu Rev
Biochem. 65:635–692. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu LF: DNA topoisomerase poisons as
antitumor drugs. Annu Rev Biochem. 58:351–375. 1989. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sakaguchi K, Sugawara F and Mizushina Y:
Inhibitors of eukaryotic DNA polymerases. Seikagaku. 74:244–251.
2002.(In Japanese). PubMed/NCBI
|
11
|
Berdis AJ: DNA polymerases as therapeutic
targets. Biochemistry. 47:8253–8260. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ji X, Avula B and Khan IA: Quantitative
and qualitative determination of six xanthones in Garcinia
mangostana L. by LC-PDA and LC-ESI-MS. J Pharm Biomed Anal.
43:1270–1276. 2007. View Article : Google Scholar
|
13
|
Wexler B: Mangosteen. Woodland Publishing;
Utah: 2007
|
14
|
Akao Y, Nakagawa Y, Iinuma M and Nozawa Y:
Anti-cancer effects of xanthones from pericarps of mangosteen. Int
J Mol Sci. 9:355–370. 2008. View Article : Google Scholar
|
15
|
Yoo JH, Kang K, Jho EH, Chin YW, Kim J and
Nho CW: α- and γ-Mangostin inhibit the proliferation of colon
cancer cells via β-catenin gene regulation in Wnt/cGMP signalling.
Food Chem. 129:1559–1566. 2011. View Article : Google Scholar
|
16
|
Cui J, Hu W, Cai Z, Liu Y, Li S, Tao W and
Xiang H: New medicinal properties of mangostins: Analgesic activity
and pharmacological characterization of active ingredients from the
fruit hull of Garcinia mangostana L. Pharmacol Biochem Behav.
95:166–172. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jung HA, Su BN, Keller WJ, Mehta RG and
Kinghorn AD: Antioxidant xanthones from the pericarp of Garcinia
mangostana (Mangosteen). J Agric Food Chem. 54:2077–2082. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen LG, Yang LL and Wang CC:
Anti-inflammatory activity of mangostins from Garcinia mangostana.
Food Chem Toxicol. 46:688–693. 2008. View Article : Google Scholar
|
19
|
Nakatani K, Atsumi M, Arakawa T, Oosawa K,
Shimura S, Nakahata N and Ohizumi Y: Inhibitions of histamine
release and prostaglandin E2 synthesis by mangosteen, a Thai
medicinal plant. Biol Pharm Bull. 25:1137–1141. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sakagami Y, Iinuma M, Piyasena KG and
Dharmaratne HR: Antibacterial activity of α-mangostin against
vancomycin resistant Enterococci (VRE) and synergism with
antibiotics. Phytomedicine. 12:203–208. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Suksamrarn S, Suwannapoch N, Phakhodee W,
Thanuhiranlert J, Ratananukul P, Chimnoi N and Suksamrarn A:
Antimycobacterial activity of prenylated xanthones from the fruits
of Garcinia mangostana. Chem Pharm Bull (Tokyo). 51:857–859. 2003.
View Article : Google Scholar
|
22
|
Kaomongkolgit R, Jamdee K and Chaisomboon
N: Antifungal activity of alpha-mangostin against Candida albicans.
J Oral Sci. 51:401–406. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen SX, Wan M and Loh BN: Active
constituents against HIV-1 protease from Garcinia mangostana.
Planta Med. 62:381–382. 1996. View Article : Google Scholar : PubMed/NCBI
|
24
|
Devi Sampath P and Vijayaraghavan K:
Cardioprotective effect of alpha-mangostin, a xanthone derivative
from mangosteen on tissue defense system against
isoproterenol-induced myocardial infarction in rats. J Biochem Mol
Toxicol. 21:336–339. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Weecharangsan W, Opanasopit P, Sukma M,
Ngawhirunpat T, Sotanaphun U and Siripong P: Antioxidative and
neuroprotective activities of extracts from the fruit hull of
mangosteen (Garcinia mangostana Linn.). Med Princ Pract.
15:281–287. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tang YP, Li PG, Kondo M, Ji HP, Kou Y and
Ou B: Effect of a mangosteen dietary supplement on human immune
function: A randomized, double-blind, placebo-controlled trial. J
Med Food. 12:755–763. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ryu HW, Curtis-Long MJ, Jung S, Jin YM,
Cho JK, Ryu YB, Lee WS and Park KH: Xanthones with neuraminidase
inhibitory activity from the seedcases of Garcinia mangostana.
Bioorg Med Chem. 18:6258–6264. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ito C, Itoigawa M, Takakura T, Ruangrungsi
N, Enjo F, Tokuda H, Nishino H and Furukawa H: Chemical
constituents of Garcinia fusca: Structure elucidation of eight new
xanthones and their cancer chemopreventive activity. J Nat Prod.
66:200–205. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hano Y, Okamoto T, Suzuki K, Negishi M and
Nomura T: Constituents of the Moraceae plants. 17 Components of the
root bark of Morus insignis Bur 3 Structures of three new
isopre-nylated xanthones morusignins I, J, and K and an
isoprenylated flavone morusignin L. Heterocycles. 36:1359–1366.
1993. View Article : Google Scholar
|
30
|
Bennett GJ, Lee HH and Das NP:
Biosynthesis of mangostin. Part 1 The origin of the xanthone
skeleton. J Chem Soc, Perkin Trans. 1(10): 2671–2676. 1990.
View Article : Google Scholar
|
31
|
Tamai K, Kojima K, Hanaichi T, Masaki S,
Suzuki M, Umekawa H and Yoshida S: Structural study of
immunoaffinity-purified DNA polymerase α-DNA primase complex from
calf thymus. Biochim Biophys Acta. 950:263–273. 1988. View Article : Google Scholar : PubMed/NCBI
|
32
|
Date T, Yamaguchi M, Hirose F, Nishimoto
Y, Tanihara K and Matsukage A: Expression of active rat DNA
polymerase β in Escherichia coli. Biochemistry. 27:2983–2990. 1988.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Umeda S, Muta T, Ohsato T, Takamatsu C,
Hamasaki N and Kang D: The D-loop structure of human mtDNA is
destabilized directly by 1-methyl-4-phenylpyridinium ion
(MPP+), a parkinsonism-causing toxin. Eur J Biochem.
267:200–206. 2000. View Article : Google Scholar
|
34
|
Oshige M, Takeuchi R, Ruike T, Kuroda K
and Sakaguchi K: Subunit protein-affinity isolation of Drosophila
DNA polymerase catalytic subunit. Protein Expr Purif. 35:248–256.
2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kusumoto R, Masutani C, Shimmyo S, Iwai S
and Hanaoka F: DNA binding properties of human DNA polymerase et
al: Implications for fidelity and polymerase switching of
translesion synthesis. Genes Cells. 9:1139–1150. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Biertümpfel C, Zhao Y, Kondo Y,
Ramón-Maiques S, Gregory M, Lee JY, Masutani C, Lehmann AR, Hanaoka
F and Yang W: Structure and mechanism of human DNA polymerase eta.
Nature. 465:1044–1048. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ohashi E, Murakumo Y, Kanjo N, Akagi J,
Masutani C, Hanaoka F and Ohmori H: Interaction of hREV1 with three
human Y-family DNA polymerases. Genes Cells. 9:523–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Shimazaki N, Yoshida K, Kobayashi T, Toji
S, Tamai K and Koiwai O: Over-expression of human DNA polymerase
lambda in E. coli and characterization of the recombinant enzyme.
Genes Cells. 7:639–651. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mizushina Y, Tanaka N, Yagi H, Kurosawa T,
Onoue M, Seto H, Horie T, Aoyagi N, Yamaoka M, Matsukage A, et al:
Fatty acids selectively inhibit eukaryotic DNA polymerase
activities in vitro. Biochim Biophys Acta. 1308:256–262. 1996.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Mizushina Y, Yoshida S, Matsukage A and
Sakaguchi K: The inhibitory action of fatty acids on DNA polymerase
β. Biochim Biophys Acta. 1336:509–521. 1997. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ogawa A, Murate T, Suzuki M, Nimura Y and
Yoshida S: Lithocholic acid, a putative tumor promoter, inhibits
mammalian DNA polymerase β. Jpn J Cancer Res. 89:1154–1159. 1998.
View Article : Google Scholar
|
42
|
Yonezawa Y, Tsuzuki T, Eitsuka T, Miyazawa
T, Hada T, Uryu K, Murakami-Nakai C, Ikawa H, Kuriyama I, Takemura
M, et al: Inhibitory effect of conjugated eicosapentaenoic acid on
human DNA topoisomerases I and II. Arch Biochem Biophys.
435:197–206. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nakayama C and Saneyoshi M: Inhibitory
effects of 9-β-D-xylofuranosyladenine 5′-triphosphate on
DNA-dependent RNA polymerase I and II from cherry salmon
(Oncorhynchus masou). J Biochem. 97:1385–1389. 1985.PubMed/NCBI
|
44
|
Soltis DA and Uhlenbeck OC: Isolation and
characterization of two mutant forms of T4 polynucleotide kinase. J
Biol Chem. 257:11332–11339. 1982.PubMed/NCBI
|
45
|
Lu BC and Sakaguchi K: An endo-exonuclease
from meiotic tissues of the basidiomycete Coprinus cinereus. Its
purification and characterization. J Biol Chem. 266:21060–21066.
1991.PubMed/NCBI
|
46
|
Mizushina Y, Murakami C, Ohta K, Takikawa
H, Mori K, Yoshida H, Sugawara F and Sakaguchi K: Selective
inhibition of the activities of both eukaryotic DNA polymerases and
DNA topoisomerases by elenic acid. Biochem Pharmacol. 63:399–407.
2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ishiyama M, Tominaga H, Shiga M, Sasamoto
K, Ohkura Y and Ueno K: A combined assay of cell viability and in
vitro cytotoxicity with a highly water-soluble tetrazolium salt,
neutral red and crystal violet. Biol Pharm Bull. 19:1518–1520.
1996. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mizushina Y: Specific inhibitors of
mammalian DNA polymerase species. Biosci Biotechnol Biochem.
73:1239–1251. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mizushina Y, Kamisuki S, Mizuno T,
Takemura M, Asahara H, Linn S, Yamaguchi T, Matsukage A, Hanaoka F,
Yoshida S, et al: Dehydroaltenusin, a mammalian DNA polymerase α
inhibitor. J Biol Chem. 275:33957–33961. 2000. View Article : Google Scholar : PubMed/NCBI
|
50
|
Murakami-Nakai C, Maeda N, Yonezawa Y,
Kuriyama I, Kamisuki S, Takahashi S, Sugawara F, Yoshida H,
Sakaguchi K and Mizushina Y: The effects of dehydroaltenusin, a
novel mammalian DNA polymerase α inhibitor, on cell proliferation
and cell cycle progression. Biochim Biophys Acta. 1674:193–199.
2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gatto B, Capranico G and Palumbo M: Drugs
acting on DNA topoisomerases: Recent advances and future
perspectives. Curr Pharm Des. 5:195–215. 1999.PubMed/NCBI
|
52
|
Larsen AK, Escargueil AE and Skladanowski
A: Catalytic topoisomerase II inhibitors in cancer therapy.
Pharmacol Ther. 99:167–181. 2003. View Article : Google Scholar : PubMed/NCBI
|
53
|
Teicher BA: Next generation topoisomerase
I inhibitors: Rationale and biomarker strategies. Biochem
Pharmacol. 75:1262–1271. 2008. View Article : Google Scholar
|
54
|
Bailly C: Topoisomerase I poisons and
suppressors as anticancer drugs. Curr Med Chem. 7:39–58. 2000.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Pommier Y, Leo E, Zhang H and Marchand C:
DNA topoisomerases and their poisoning by anticancer and
antibacterial drugs. Chem Biol. 17:421–433. 2010. View Article : Google Scholar : PubMed/NCBI
|
56
|
Park JK, Lee JS, Lee HH, Choi IS and Park
SD: Accumulation of polycyclic aromatic hydrocarbon-induced single
strand breaks is attributed to slower rejoining processes by DNA
polymerase inhibitor, cytosine arabinoside in CHO-K1 cells. Life
Sci. 48:1255–1261. 1991. View Article : Google Scholar : PubMed/NCBI
|