Role of ribosomal protein mutations in tumor development (Review)
- Authors:
- Kaveh M. Goudarzi
- Mikael S. Lindström
-
Affiliations: Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden - Published online on: February 9, 2016 https://doi.org/10.3892/ijo.2016.3387
- Pages: 1313-1324
-
Copyright: © Goudarzi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, et al: The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 21:169–175. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP and Lipton JM: Incidence of neoplasia in Diamond Blackfan anemia: A report from the Diamond Blackfan Anemia Registry. Blood. 119:3815–3819. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, Gianfelici V, Geerdens E, Clappier E, Porcu M, et al: Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 45:186–190. 2013. View Article : Google Scholar | |
Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES and Getz G: Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 505:495–501. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nieminen TT, O'Donohue MF, Wu Y, Lohi H, Scherer SW, Paterson AD, Ellonen P, Abdel-Rahman WM, Valo S, Mecklin JP, et al: Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 147:595–598.e5. 2014. View Article : Google Scholar : PubMed/NCBI | |
Novetsky AP, Zighelboim I, Thompson DM Jr, Powell MA, Mutch DG and Goodfellow PJ: Frequent mutations in the RPL22 gene and its clinical and functional implications. Gynecol Oncol. 128:470–474. 2013. View Article : Google Scholar | |
Sharma S and Lafontaine DL: ‘View From A Bridge’: A new perspective on eukaryotic rRNA base modification. Trends Biochem Sci. 40:560–575. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boisvert FM, van Koningsbruggen S, Navascués J and Lamond AI: The multifunctional nucleolus. Nat Rev Mol Cell Biol. 8:574–585. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ferreira-Cerca S, Pöll G, Gleizes PE, Tschochner H and Milkereit P: Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell. 20:263–275. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ferreira-Cerca S, Pöll G, Kühn H, Neueder A, Jakob S, Tschochner H and Milkereit P: Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell. 28:446–457. 2007. View Article : Google Scholar : PubMed/NCBI | |
Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ and Bessler M: The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA. 14:1918–1929. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kenmochi N, Kawaguchi T, Rozen S, Davis E, Goodman N, Hudson TJ, Tanaka T and Page DC: A map of 75 human ribosomal protein genes. Genome Res. 8:509–523. 1998.PubMed/NCBI | |
Ban N, Beckmann R, Cate JH, Dinman JD, Dragon F, Ellis SR, Lafontaine DL, Lindahl L, Liljas A, Lipton JM, et al: A new system for naming ribosomal proteins. Curr Opin Struct Biol. 24:165–169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Slavov N, Semrau S, Airoldi E, Budnik B and van Oudenaarden A: Differential stoichiometry among core ribosomal proteins. Cell Rep. 13:865–873. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gilbert WV: Functional specialization of ribosomes? Trends Biochem Sci. 36:127–132. 2011. View Article : Google Scholar : PubMed/NCBI | |
O'Leary MN, Schreiber KH, Zhang Y, Duc AC, Rao S, Hale JS, Academia EC, Shah SR, Morton JF, Holstein CA, et al: The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet. 9. pp. e10037082013, View Article : Google Scholar | |
Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C and Hay RT: Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep. 9:280–286. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ishii K, Washio T, Uechi T, Yoshihama M, Kenmochi N and Tomita M: Characteristics and clustering of human ribosomal protein genes. BMC Genomics. 7:372006. View Article : Google Scholar : PubMed/NCBI | |
Branca RM, Orre LM, Johansson HJ, Granholm V, Huss M, Pérez-Bercoff Å, Forshed J, Käll L and Lehtiö J: HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Meth. 11:59–62. 2014. View Article : Google Scholar | |
Lafontaine DL: Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol. 22:11–19. 2015. View Article : Google Scholar : PubMed/NCBI | |
van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E and Simonis M: Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 15:R62014. View Article : Google Scholar : PubMed/NCBI | |
Lafontaine DL: A ‘garbage can’ for ribosomes: How eukaryotes degrade their ribosomes. Trends Biochem Sci. 35:267–277. 2010. View Article : Google Scholar : PubMed/NCBI | |
Perry RP: Balanced production of ribosomal proteins. Gene. 401:1–3. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lam YW, Lamond AI, Mann M and Andersen JS: Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol. 17:749–760. 2007. View Article : Google Scholar : PubMed/NCBI | |
Warner JR: In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. J Mol Biol. 115:315–333. 1977. View Article : Google Scholar : PubMed/NCBI | |
Lindström MS and Nistér M: Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One. 5:e95782010. View Article : Google Scholar : PubMed/NCBI | |
Badhai J, Fröjmark AS, Razzaghian HR, Davey E, Schuster J and Dahl N: Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency. FEBS Lett. 583:2049–2053. 2009. View Article : Google Scholar : PubMed/NCBI | |
Payne EM, Virgilio M, Narla A, Sun H, Levine M, Paw BH, Berliner N, Look AT, Ebert BL and Khanna-Gupta A: L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood. 120:2214–2224. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lambertsson A: The minute genes in Drosophila and their molecular functions. Adv Genet. 38:69–134. 1998. View Article : Google Scholar : PubMed/NCBI | |
Stewart MJ and Denell R: Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth. Mol Cell Biol. 13:2524–2535. 1993. View Article : Google Scholar : PubMed/NCBI | |
Watson KL, Konrad KD, Woods DF and Bryant PJ: Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci USA. 89:11302–11306. 1992. View Article : Google Scholar : PubMed/NCBI | |
Lin JI, Mitchell NC, Kalcina M, Tchoubrieva E, Stewart MJ, Marygold SJ, Walker CD, Thomas G, Leevers SJ, Pearson RB, et al: Drosophila ribosomal protein mutants control tissue growth non-autonomously via effects on the prothoracic gland and ecdysone. PLoS Genet. 7:e10024082011. View Article : Google Scholar : PubMed/NCBI | |
Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA and Hopkins N: Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2:E1392004. View Article : Google Scholar : PubMed/NCBI | |
Lai K, Amsterdam A, Farrington S, Bronson RT, Hopkins N and Lees JA: Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Dev Dyn. 238:76–85. 2009. View Article : Google Scholar : | |
MacInnes AW, Amsterdam A, Whittaker CA, Hopkins N and Lees JA: Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc Natl Acad Sci USA. 105:10408–10413. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stadanlick JE, Zhang Z, Lee SY, Hemann M, Biery M, Carleton MO, Zambetti GP, Anderson SJ, Oravecz T and Wiest DL: Developmental arrest of T cells in Rpl22-deficient mice is dependent upon multiple p53 effectors. J Immunol. 187:664–675. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morgado-Palacin L, Varetti G, Llanos S, Gómez-López G, Martinez D and Serrano M: Partial Loss of Rpl11 in Adult mice recapitulates diamond-blackfan anemia and promotes lymphomagenesis. Cell Rep. 13:712–722. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kazerounian S, Ciarlini PD, Yuan D, Ghazvinian R, Alberich-Jorda M, Joshi M, Zhang H, Beggs AH and Gazda HT: Development of soft tissue sarcomas in ribosomal proteins L5 and S24 heterozygous mice. J Cancer. 7:32–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
McCann KL and Baserga SJ: Genetics. Mysterious ribosomopathies. Science. 341:849–850. 2013. View Article : Google Scholar : PubMed/NCBI | |
Narla A and Ebert BL: Ribosomopathies: Human disorders of ribosome dysfunction. Blood. 115:3196–3205. 2010. View Article : Google Scholar : PubMed/NCBI | |
Freed EF, Bleichert F, Dutca LM and Baserga SJ: When ribosomes go bad: Diseases of ribosome biogenesis. Mol Biosyst. 6:481–493. 2010. View Article : Google Scholar : PubMed/NCBI | |
Choesmel V, Fribourg S, Aguissa-Touré AH, Pinaud N, Legrand P, Gazda HT and Gleizes PE: Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet. 17:1253–1263. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cmejla R, Cmejlova J, Handrkova H, Petrak J, Petrtylova K, Mihal V, Stary J, Cerna Z, Jabali Y and Pospisilova D: Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia. Hum Mutat. 30:321–327. 2009. View Article : Google Scholar : PubMed/NCBI | |
Farrar JE, Nater M, Caywood E, McDevitt MA, Kowalski J, Takemoto CM, Talbot CC Jr, Meltzer P, Esposito D, Beggs AH, et al: Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood. 112:1582–1592. 2008. View Article : Google Scholar : PubMed/NCBI | |
Flygare J and Karlsson S: Diamond-Blackfan anemia: Erythropoiesis lost in translation. Blood. 109:3152–3154. 2007. View Article : Google Scholar | |
Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, et al: Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 451:335–339. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alter BP, Giri N, Savage SA, Peters JA, Loud JT, Leathwood L, Carr AG, Greene MH and Rosenberg PS: Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 150:179–188. 2010.PubMed/NCBI | |
Majeed F, Jadko S, Freedman MH and Dror Y: Mutation analysis of SBDS in pediatric acute myeloblastic leukemia. Pediatr Blood Cancer. 45:920–924. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maserati E, Pressato B, Valli R, Minelli A, Sainati L, Patitucci F, Marletta C, Mastronuzzi A, Poli F, Lo Curto F, et al: The route to development of myelodysplastic syndrome/acute myeloid leukaemia in Shwachman-Diamond syndrome: The role of ageing, karyotype instability, and acquired chromosome anomalies. Br J Haematol. 145:190–197. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A and Dokal I: X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 19:32–38. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Rudnick DA, He J, Crimmins DL, Ladenson JH, Bessler M and Mason PJ: Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol Cell Biol. 30:413–422. 2010. View Article : Google Scholar : | |
Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, et al: rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 44:660–666. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alter BP, Giri N, Savage SA and Rosenberg PS: Cancer in dyskeratosis congenita. Blood. 113:6549–6557. 2009. View Article : Google Scholar : PubMed/NCBI | |
Donadieu J, Leblanc T, Bader Meunier B, Barkaoui M, Fenneteau O, Bertrand Y, Maier-Redelsperger M, Micheau M, Stephan JL, Phillipe N, et al; French Severe Chronic Neutropenia Study Group; Experience of the French Severe Chronic Neutropenia Study Group. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Haematologica. 90:45–53. 2005.PubMed/NCBI | |
Danilova N and Gazda HT: Ribosomopathies: How a common root can cause a tree of pathologies. Dis Model Mech. 8:1013–1026. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ljungström V, Cortese D, Young E, Pandzic T, Mansouri L, Plevova K, Ntoufa S, Baliakas P, Clifford R, Sutton LA, et al: Whole-exome sequencing in relapsing chronic lymphocytic leukemia: Clinical impact of recurrent RPS15 mutations. Blood. Dec 16–2015.(Epub ahead of print). | |
Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, Kluth S, Bozic I, Lawrence M, Böttcher S, et al: Mutations driving CLL and their evolution in progression and relapse. Nature. 526:525–530. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, et al: Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med. 19:368–371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rao S, Lee SY, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z, Jeffers JR, Rhodes M, Anderson S, Oravecz T, et al: Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood. 120:3764–3773. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ferreira AM, Tuominen I, van Dijk-Bos K, Sanjabi B, van der Sluis T, van der Zee AG, Hollema H, Zazula M, Sijmons RH, Aaltonen LA, et al: High frequency of RPL22 mutations in microsatellite-unstable colorectal and endometrial tumours. Hum Mutat. 35:1442–1445. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nagarajan N, Bertrand D, Hillmer AM, Zang ZJ, Yao F, Jacques PÉ, Teo AS, Cutcutache I, Zhang Z, Lee WH, et al: Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol. 13:R1152012. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Sun H, Wang H, Zhang S, Yu X and Zhang L: Down-regulation of ribosomal protein L22 in non-small cell lung cancer. Med Oncol. 30:6462013. View Article : Google Scholar : PubMed/NCBI | |
Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, Zhu S, Cao Z, Liang Y, Sboner A, et al: PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 46:1227–1232. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dave B, Granados-Principal S, Zhu R, Benz S, Rabizadeh S, Soon-Shiong P, Yu KD, Shao Z, Li X, Gilcrease M, et al: Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling. Proc Natl Acad Sci USA. 111:8838–8843. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa H, Wardell CP, Furuta M, Taniguchi H and Fujimoto A: Cancer whole-genome sequencing: Present and future. Oncogene. 34:5943–5950. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boria I, Quarello P, Avondo F, Garelli E, Aspesi A, Carando A, Campagnoli MF, Dianzani I and Ramenghi U: A new database for ribosomal protein genes which are mutated in Diamond-Blackfan Anemia. Hum Mutat. 29:E263–E270. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J and Zhang R: Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev. 35:225–285. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kowalczyk P, Woszczyński M and Ostrowski J: Increased expression of ribosomal protein S2 in liver tumors, post-hepactomized livers, and proliferating hepatocytes in vitro. Acta Biochim Pol. 49:615–624. 2002. | |
Wang H, Zhao LN, Li KZ, Ling R, Li XJ and Wang L: Overexpression of ribosomal protein L15 is associated with cell proliferation in gastric cancer. BMC Cancer. 6:912006. View Article : Google Scholar : PubMed/NCBI | |
Vaarala MH, Porvari KS, Kyllönen AP, Mustonen MV, Lukkarinen O and Vihko PT: Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: Confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int J Cancer. 78:27–32. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bee A, Ke Y, Forootan S, Lin K, Beesley C, Forrest SE and Foster CS: Ribosomal protein l19 is a prognostic marker for human prostate cancer. Clin Cancer Res. 12:2061–2065. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sim EU, Ang CH, Ng CC, Lee CW and Narayanan K: Differential expression of a subset of ribosomal protein genes in cell lines derived from human nasopharyngeal epithelium. J Hum Genet. 55:118–120. 2010. View Article : Google Scholar | |
Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, et al: Ribosomal proteins RPS11 and RPS20, two stress-response markers of glioblastoma stem cells, are novel predictors of poor prognosis in glioblastoma patients. PLoS One. 10:e01413342015. View Article : Google Scholar : PubMed/NCBI | |
Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua R, Ren LL, Li CT, Sun YW, Chen HY, et al: Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget. 6:37028–37042. 2015.PubMed/NCBI | |
Kobayashi T, Sasaki Y, Oshima Y, Yamamoto H, Mita H, Suzuki H, Toyota M, Tokino T, Itoh F, Imai K, et al: Activation of the ribosomal protein L13 gene in human gastrointestinal cancer. Int J Mol Med. 18:161–170. 2006.PubMed/NCBI | |
Song MJ, Jung CK, Park CH, Hur W, Choi JE, Bae SH, Choi JY, Choi SW, Han NI and Yoon SK: RPL36 as a prognostic marker in hepatocellular carcinoma. Pathol Int. 61:638–644. 2011. View Article : Google Scholar : PubMed/NCBI | |
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J and LLeonart ME: Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev. 33:115–141. 2014.PubMed/NCBI | |
De Keersmaecker K, Sulima SO and Dinman JD: Ribosomopathies and the paradox of cellular hypo- to hyperproliferation. Blood. 125:1377–1382. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ruggero D and Pandolfi PP: Does the ribosome translate cancer? Nat Rev Cancer. 3:179–192. 2003. View Article : Google Scholar : PubMed/NCBI | |
Warner JR and McIntosh KB: How common are extraribosomal functions of ribosomal proteins? Mol Cell. 34:3–11. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barkić M, Crnomarković S, Grabusić K, Bogetić I, Panić L, Tamarut S, Cokarić M, Jerić I, Vidak S and Volarević S: The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Mol Cell Biol. 29:2489–2504. 2009. View Article : Google Scholar | |
Kondrashov N, Pusic A, Stumpf CR, Shimizu K, Hsieh AC, Xue S, Ishijima J, Shiroishi T and Barna M: Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell. 145:383–397. 2011. View Article : Google Scholar : PubMed/NCBI | |
Holmberg Olausson K, Nistér M and Lindström MS: p53-dependent and -independent nucleolar stress responses. Cells. 1:774–798. 2012. View Article : Google Scholar : PubMed/NCBI | |
James A, Wang Y, Raje H, Rosby R and DiMario P: Nucleolar stress with and without p53. Nucleus. 5:402–426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Panić L, Tamarut S, Sticker-Jantscheff M, Barkić M, Solter D, Uzelac M, Grabusić K and Volarević S: Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol. 26:8880–8891. 2006. View Article : Google Scholar | |
McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ, Zhang W, Fuchs H, de Angelis MH, Myers RM, et al: Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet. 40:963–970. 2008. View Article : Google Scholar : PubMed/NCBI | |
Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T and Wiest DL: Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity. 26:759–772. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ, Wong SH, et al: A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med. 16:59–66. 2010. View Article : Google Scholar : | |
Terzian T and Box N: Genetics of ribosomal proteins: ‘curiouser and curiouser’. PLoS Genet. 9:e10033002013. View Article : Google Scholar | |
Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP and Thomas G: Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol. 11:501–508. 2009. View Article : Google Scholar : PubMed/NCBI | |
Volarevic S, Stewart MJ, Ledermann B, Zilberman F, Terracciano L, Montini E, Grompe M, Kozma SC and Thomas G: Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science. 288:2045–2047. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jaako P, Flygare J, Olsson K, Quere R, Ehinger M, Henson A, Ellis S, Schambach A, Baum C, Richter J, et al: Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia. Blood. 118:6087–6096. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fumagalli S, Ivanenkov VV, Teng T and Thomas G: Supra-induction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev. 26:1028–1040. 2012. View Article : Google Scholar : PubMed/NCBI | |
Teng T, Mercer CA, Hexley P, Thomas G and Fumagalli S: Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol Cell Biol. 33:4660–4671. 2013. View Article : Google Scholar : PubMed/NCBI | |
Donati G, Peddigari S, Mercer CA and Thomas G: 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 4:87–98. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sloan KE, Bohnsack MT and Watkins NJ: The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 5:237–247. 2013. View Article : Google Scholar : PubMed/NCBI | |
Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindström MS and Zhang Y: An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell. 18:231–243. 2010. View Article : Google Scholar : PubMed/NCBI | |
Deisenroth C and Zhang Y: Ribosome biogenesis surveillance: Probing the ribosomal protein-Mdm2-p53 pathway. Oncogene. 29:4253–4260. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miliani de Marval PL and Zhang Y: The RP-Mdm2-p53 pathway and tumorigenesis. Oncotarget. 2:234–238. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Lu H: Signaling to p53: Ribosomal proteins find their way. Cancer Cell. 16:369–377. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nishimura K, Kumazawa T, Kuroda T, Katagiri N, Tsuchiya M, Goto N, Furumai R, Murayama A, Yanagisawa J and Kimura K: Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep. 10:1310–1323. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, He Y, Jin A, Tikunov AP, Zhou L, Tollini LA, Leslie P, Kim TH, Li LO, Coleman RA, et al: Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proc Natl Acad Sci USA. 111:E2414–E2422. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Carlson NR, Dong J and Zhang Y: Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways. Oncogene. 34:5709–5717. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jaako P, Debnath S, Olsson K, Zhang Y, Flygare J, Lindström MS, Bryder D and Karlsson S: Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia. Leukemia. 29:2221–2229. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lindström MS, Deisenroth C and Zhang Y: Putting a finger on growth surveillance: Insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle. 6:434–437. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lindström MS, Jin A, Deisenroth C, White Wolf G and Zhang Y: Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol. 27:1056–1068. 2007. View Article : Google Scholar : | |
Zhang Q, Xiao H, Chai SC, Hoang QQ and Lu H: Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem. 286:38264–38274. 2011. View Article : Google Scholar : PubMed/NCBI | |
Danilova N, Sakamoto KM and Lin S: Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood. 112:5228–5237. 2008. View Article : Google Scholar : PubMed/NCBI | |
Torihara H, Uechi T, Chakraborty A, Shinya M, Sakai N and Kenmochi N: Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia. Br J Haematol. 152:648–654. 2011. View Article : Google Scholar : PubMed/NCBI | |
Uechi T, Nakajima Y, Chakraborty A, Torihara H, Higa S and Kenmochi N: Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond-Blackfan anemia. Hum Mol Genet. 17:3204–3211. 2008. View Article : Google Scholar : PubMed/NCBI | |
Uechi T, Nakajima Y, Nakao A, Torihara H, Chakraborty A, Inoue K and Kenmochi N: Ribosomal protein gene knockdown causes developmental defects in zebrafish. PLoS One. 1:e372006. View Article : Google Scholar : PubMed/NCBI | |
Yadav GV, Chakraborty A, Uechi T and Kenmochi N: Ribosomal protein deficiency causes Tp53-independent erythropoiesis failure in zebrafish. Int J Biochem Cell Biol. 49:1–7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, Hedlund A, Hast R, Schlegelberger B, Porwit A, et al: TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 29:1971–1979. 2011. View Article : Google Scholar : PubMed/NCBI | |
Saft L, Karimi M, Ghaderi M, Matolcsy A, Mufti GJ, Kulasekararaj A, Göhring G, Giagounidis A, Selleslag D, Muus P, et al: p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q). Haematologica. 99:1041–1049. 2014. View Article : Google Scholar : PubMed/NCBI | |
Antunes AT, Goos YJ, Pereboom TC, Hermkens D, Wlodarski MW, Da Costa L and MacInnes AW: Ribosomal Protein mutations result in constitutive p53 protein degradation through impairment of the AKT pathway. PLoS Genet. 11:e10053262015. View Article : Google Scholar : PubMed/NCBI | |
Heijnen HF, van Wijk R, Pereboom TC, Goos YJ, Seinen CW, van Oirschot BA, van Dooren R, Gastou M, Giles RH, van Solinge W, et al: Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet. 10:e10043712014. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, et al: Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev. 29:1524–1534. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma H and Pederson T: The nucleolus stress response is coupled to an ATR-Chk1-mediated G2 arrest. Mol Biol Cell. 24:1334–1342. 2013. View Article : Google Scholar : PubMed/NCBI | |
Danilova N, Bibikova E, Covey TM, Nathanson D, Dimitrova E, Konto Y, Lindgren A, Glader B, Radu CG, Sakamoto KM, et al: The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis Model Mech. 7:895–905. 2014. View Article : Google Scholar : PubMed/NCBI | |
Padeken J and Heun P: Nucleolus and nuclear periphery: Velcro for heterochromatin. Curr Opin Cell Biol. 28:54–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
O'Donohue MF, Choesmel V, Faubladier M, Fichant G and Gleizes PE: Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J Cell Biol. 190:853–866. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng JC and Karpen GH: H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol. 9:25–35. 2007. View Article : Google Scholar | |
Boglev Y, Badrock AP, Trotter AJ, Du Q, Richardson EJ, Parslow AC, Markmiller SJ, Hall NE, de Jong-Curtain TA, Ng AY, et al: Autophagy induction is a Tor- and Tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis. PLoS Genet. 9:e10032792013. View Article : Google Scholar : PubMed/NCBI | |
Donati G, Brighenti E, Vici M, Mazzini G, Treré D, Montanaro L and Derenzini M: Selective inhibition of rRNA transcription downregulates E2F-1: A new p53-independent mechanism linking cell growth to cell proliferation. J Cell Sci. 124:3017–3028. 2011. View Article : Google Scholar : PubMed/NCBI | |
Donati G, Montanaro L and Derenzini M: Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res. 72:1602–1607. 2012. View Article : Google Scholar : PubMed/NCBI | |
Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG and Volarevic S: The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol. Dec 23–2015.(Epub ahead of print). View Article : Google Scholar | |
Marcel V, Ghayad SE, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, Vendrell JA, Hacot S, Mertani HC, Albaret MA, et al: p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 24:318–330. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW and Dinman JD: Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc Natl Acad Sci USA. 111:5640–5645. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ludwig LS, Gazda HT, Eng JC, Eichhorn SW, Thiru P, Ghazvinian R, George TI, Gotlib JR, Beggs AH, Sieff CA, et al: Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med. 20:748–753. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH, Sieff CA, Orkin SH, Nathan DG, Lander ES, et al: Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 122:2439–2443. 2012. View Article : Google Scholar : PubMed/NCBI | |
Amanatiadou EP, Papadopoulos GL, Strouboulis J and Vizirianakis IS: GATA1 and PU.1 bind to ribosomal protein genes in erythroid cells: Implications for ribosomopathies. PLoS One. 10:e01400772015. View Article : Google Scholar : PubMed/NCBI | |
Loreni F, Mancino M and Biffo S: Translation factors and ribosomal proteins control tumor onset and progression: How? Oncogene. 33:2145–2156. 2014. View Article : Google Scholar | |
Ingolia NT: Ribosome profiling: New views of translation, from single codons to genome scale. Nat Rev Genet. 15:205–213. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bhavsar RB, Makley LN and Tsonis PA: The other lives of ribosomal proteins. Hum Genomics. 4:327–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lindström MS: Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun. 379:167–170. 2009. View Article : Google Scholar | |
Wool IG: Extraribosomal functions of ribosomal proteins. Trends Biochem Sci. 21:164–165. 1996. View Article : Google Scholar : PubMed/NCBI | |
Naora H, Takai I, Adachi M and Naora H: Altered cellular responses by varying expression of a ribosomal protein gene: Sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol. 141:741–753. 1998. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Shi Y, Gou Y, Li J, Han S, Zhang Y, Huo J, Ning X, Sun L, Chen Y, et al: Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). J Cell Mol Med. 15:296–306. 2011. View Article : Google Scholar | |
Shi Y, Zhai H, Wang X, Han Z, Liu C, Lan M, Du J, Guo C, Zhang Y, Wu K, et al: Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp Cell Res. 296:337–346. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dai MS and Lu H: Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 279:44475–44482. 2004. View Article : Google Scholar : PubMed/NCBI | |
Daftuar L, Zhu Y, Jacq X and Prives C: Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One. 8:e686672013. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Huang J, He J, Wang A, Xu S, Huang SF and Xiao S: RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centrosome integrity. Neoplasia. 12:284–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krüger T, Zentgraf H and Scheer U: Intranucleolar sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins. J Cell Biol. 177:573–578. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chan YL, Diaz JJ, Denoroy L, Madjar JJ and Wool IG: The primary structure of rat ribosomal protein L10: Relationship to a Jun-binding protein and to a putative Wilms' tumor suppressor. Biochem Biophys Res Commun. 225:952–956. 1996. View Article : Google Scholar : PubMed/NCBI | |
Houmani JL, Davis CI and Ruf IK: Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol. 83:9844–9853. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ni JQ, Liu LP, Hess D, Rietdorf J and Sun FL: Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Genes Dev. 20:1959–1973. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fahl SP, Harris B, Coffey F and Wiest DL: Rpl22 Loss impairs the development of B lymphocytes by activating a p53-dependent checkpoint. J Immunol. 194:200–209. 2015. View Article : Google Scholar : | |
Rashkovan M, Vadnais C, Ross J, Gigoux M, Suh WK, Gu W, Kosan C and Möröy T: Miz-1 regulates translation of Trp53 via ribosomal protein L22 in cells undergoing V(D)J recombination. Proc Natl Acad Sci USA. 111:E5411–E5419. 2014. View Article : Google Scholar : PubMed/NCBI | |
Montanaro L, Treré D and Derenzini M: Nucleolus, ribosomes, and cancer. Am J Pathol. 173:301–310. 2008. View Article : Google Scholar : PubMed/NCBI | |
Treré D, Ceccarelli C, Montanaro L, Tosti E and Derenzini M: Nucleolar size and activity are related to pRb and p53 status in human breast cancer. J Histochem Cytochem. 52:1601–1607. 2004. View Article : Google Scholar : PubMed/NCBI | |
Montanaro L, Treré D and Derenzini M: The emerging role of RNA polymerase I transcription machinery in human malignancy: A clinical perspective. Onco Targets Ther. 6:909–916. 2013.PubMed/NCBI | |
Drygin D, O'Brien SE, Hannan RD, McArthur GA and Von Hoff DD: Targeting the nucleolus for cancer-specific activation of p53. Drug Discov Today. 19:259–265. 2014. View Article : Google Scholar | |
Drygin D, Siddiqui-Jain A, O'Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, et al: Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res. 69:7653–7661. 2009. View Article : Google Scholar : PubMed/NCBI | |
Drygin D, Lin A, Bliesath J, Ho CB, O'Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK, Siddiqui-Jain A, et al: Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 71:1418–1430. 2011. View Article : Google Scholar | |
Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, et al: Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 22:51–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ and Laiho M: A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell. 25:77–90. 2014. View Article : Google Scholar : PubMed/NCBI | |
Colis L, Peltonen K, Sirajuddin P, Liu H, Sanders S, Ernst G, Barrow JC and Laiho M: DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response. Oncotarget. 5:4361–4369. 2014. View Article : Google Scholar : PubMed/NCBI | |
Morgado-Palacin L, Llanos S, Urbano-Cuadrado M, Blanco-Aparicio C, Megias D, Pastor J and Serrano M: Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis. 35:2822–2830. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Hu Y and Stearns ME: RPS2: a novel therapeutic target in prostate cancer. J Exp Clin Cancer Res. 28:62009. View Article : Google Scholar : PubMed/NCBI | |
Bee A, Brewer D, Beesley C, Dodson A, Forootan S, Dickinson T, Gerard P, Lane B, Yao S, Cooper CS, et al: siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One. 6:e226722011. View Article : Google Scholar : PubMed/NCBI | |
Marcel V, Catez F and Diaz JJ: Ribosomes: The future of targeted therapies? Oncotarget. 4:1554–1555. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, et al; St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 44:251–253. 2012. View Article : Google Scholar : PubMed/NCBI |