1
|
Sun Y, Liu M, Yang B, Li B and Lu J: Role
of siRNA silencing of MMP-2 gene on invasion and growth of
laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol.
265:1385–1391. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhao JX and Xie XL: Regulation of gene
expression in laryngeal carcinama by microRNAs. Int J Pathol Clin
Med. 32:222–225. 2012.
|
3
|
Nacerddine K, Beaudry JB, Ginjala V,
Westerman B, Mattiroli F, Song JY, van der Poel H, Ponz OB,
Pritchard C, Cornelissen-Steijger P, et al: Akt-mediated
phosphorylation of Bmi1 modulates its oncogenic potential, E3
ligase activity, and DNA damage repair activity in mouse prostate
cancer. J Clin Invest. 122:1920–1932. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sánchez-Beato M, Sánchez E,
González-Carreró J, Morente M, Díez A, Sánchez-Verde L, Martín MC,
Cigudosa JC, Vidal M and Piris MA: Variability in the expression of
polycomb proteins in different normal and tumoral tissues. A pilot
study using tissue microarrays. Mod Pathol. 19:684–694. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Martínez-Romero C, Rooman I, Skoudy A,
Guerra C, Molero X, González A, Iglesias M, Lobato T, Bosch A,
Barbacid M, et al: The epigenetic regulators Bmi1 and Ring1B are
differentially regulated in pancreatitis and pancreatic ductal
adenocarcinoma. J Pathol. 219:205–213. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bosch A, Panoutsopoulou K, Corominas JM,
Gimeno R, Moreno-Bueno G, Martín-Caballero J, Morales S, Lobato T,
Martínez-Romero C, Farias EF, et al: The Polycomb group protein
RING1B is overexpressed in ductal breast carcinoma and is required
to sustain FAK steady state levels in breast cancer epithelial
cells. Oncotarget. 5:2065–2076. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Su WJ, Fang JS, Cheng F, Liu C, Zhou F and
Zhang J: RNF2/Ring1b negatively regulates p53 expression in
selective cancer cell types to promote tumor development. Proc Natl
Acad Sci USA. 110:1720–1725. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pan MR, Peng G, Hung WC and Lin SY:
Monoubiquitination of H2AX protein regulates DNA damage response
signaling. J Biol Chem. 286:28599–28607. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu CY, Kang HY, Yang WL, Wu J, Jeong YS,
Wang J, Chan CH, Lee SW, Zhang X, Lamothe B, et al: Critical role
of monoubiquitination of histone H2AX protein in histone H2AX
phosphorylation and DNA damage response. J Biol Chem.
286:30806–30815. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hongyun S and Shuchai Z:
Radiosensitization of esophageal cancer cells ECA109 by knockdown
of H2AX. Thorac Cancer. 4:1759–7706. 2013.
|
11
|
Song W, Li H, Tao K, Li R, Song Z, Zhao Q,
Zhang F and Dou K: Expression and clinical significance of the stem
cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract.
62:1212–1218. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Song LB, Zeng MS, Liao WT, Zhang L, Mo HY,
Liu WL, Shao JY, Wu QL, Li MZ, Xia YF, et al: Bmi-1 is a novel
molecular marker of nasopharyngeal carcinoma progression and
immortalizes primary human nasopharyngeal epithelial cells. Cancer
Res. 66:6225–6232. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
14
|
Bartek J and Lukas J: Chk1 and Chk2
kinases in checkpoint control and cancer. Cancer Cell. 3:421–429.
2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Xu H, Zou X, Wang J, Zhu Y, Chen
H, Shen B, Deng X, Zhou A, Chin YE, et al: Snail recruits Ring1B to
mediate transcriptional repression and cell migration in pancreatic
cancer cells. Cancer Res. 74:4353–4363. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rai K, Akdemir KC, Kwong LN, Fiziev P, Wu
CJ, Keung EZ, Sharma S, Samant NS, Williams M, Axelrad JB, et al:
Dual roles of RNF2 in melanoma progression. Cancer Discov.
5:1314–1327. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
van der Stoop P, Boutsma EA, Hulsman D,
Noback S, Heimerikx M, Kerkhoven RM, Voncken JW, Wessels LF and van
Lohuizen M: Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive
complex 1 contributes to stable maintenance of mouse embryonic stem
cells. PLoS One. 3:e22352008. View Article : Google Scholar : PubMed/NCBI
|
18
|
van der Velden YU, Wang L, Querol Cano L
and Haramis AP: The polycomb group protein ring1b/rnf2 is
specifically required for craniofacial development. PLoS One.
8:e739972013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yamamoto Y, Abe A and Emi N: Clarifying
the impact of polycomb complex component disruption in human
cancers. Mol Cancer Res. 12:479–484. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen S, Chen J, Zhan Q, Zhu Y, Chen H,
Deng X, Hou Z, Shen B, Chen Y and Peng C: H2AK119Ub1 and H3K27Me3
in molecular staging for survival prediction of patients with
pancreatic ductal adenocarcinoma. Oncotarget. 5:10421–10433. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hasegawa K, Sin HS, Maezawa S, Broering
TJ, Kartashov AV, Alavattam KG, Ichijima Y, Zhang F, Bacon WC,
Greis KD, et al: SCML2 establishes the male germline epigenome
through regulation of histone H2A ubiquitination. Dev Cell.
32:574–588. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zaaroor-Regev D, de Bie P, Scheffner M,
Noy T, Shemer R, Heled M, Stein I, Pikarsky E and Ciechanover A:
Regulation of the polycomb protein Ring1B by self-ubiquitination or
by E6-AP may have implications to the pathogenesis of Angelman
syndrome. Proc Natl Acad Sci USA. 107:6788–6793. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Leung JW, Agarwal P, Canny MD, Gong F,
Robison AD, Finkelstein IJ, Durocher D and Miller KM: Nucleosome
acidic patch promotes RNF168- and RING1B/BMI1-dependent H2AX and
H2A ubiquitination and DNA damage signaling. PLoS Genet.
10:e10041782014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Boquoi A, Arora S, Chen T, Litwin S, Koh J
and Enders GH: Reversible cell cycle inhibition and premature aging
features imposed by conditional expression of p16Ink4a. Aging Cell.
14:139–147. 2015. View Article : Google Scholar :
|
25
|
Blanco D, Vicent S, Fraga MF,
Fernandez-Garcia I, Freire J, Lujambio A, Esteller M,
Ortiz-de-Solorzano C, Pio R, Lecanda F, et al: Molecular analysis
of a multistep lung cancer model induced by chronic inflammation
reveals epigenetic regulation of p16 and activation of the DNA
damage response pathway. Neoplasia. 9:840–852. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wen W, Peng C, Kim MO, Ho Jeong C, Zhu F,
Yao K, Zykova T, Ma W, Carper A, Langfald A, et al: Knockdown of
RNF2 induces apoptosis by regulating MDM2 and p53 stability.
Oncogene. 33:421–428. 2014. View Article : Google Scholar :
|
27
|
Shapiro GI, Edwards CD, Ewen ME and
Rollins BJ: p16INK4A participates in a G1 arrest
checkpoint in response to DNA damage. Mol Cell Biol. 18:378–387.
1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Loriot Y, Mordant P, Dugue D, Geneste O,
Gombos A, Opolon P, Guegan J, Perfettini JL, Pierre A, Berthier LK,
et al: Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor
S44563 in small-cell lung cancer. Cell Death Dis. 5:e14232014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou C, Yang F, Xi W, Wei M, Zheng G, Wang
W, Yang A, Zhang J and Wen W: Effect of RNF2 knockdown on apoptosis
and radiosensitivity in glioma U87 cells. Xi Bao Yu Fen Zi Mian Yi
Xue Za Zhi. 30:471–475. 2014.In Chinese. PubMed/NCBI
|