1
|
Abrahamsson J, Forestier E, Heldrup J,
Jahnukainen K, Jónsson OG, Lausen B, Palle J, Zeller B and Hasle H:
Response-guided induction therapy in pediatric acute myeloid
leukemia with excellent remission rate. J Clin Oncol. 29:310–315.
2011. View Article : Google Scholar
|
2
|
Felice MS, Rossi JG, Alonso CN, Gallego
MS, Eberle SE, Alfaro EM, Guitter MR, Bernasconi AR, Rubio PL,
Coccé MC, et al: Experience with four consecutive BFM-based
protocols for treatment of childhood with non-promyelocytic acute
yeloblastic leukemia in Argentina. Leuk Lymphoma. 6:1–10.
2016.(Epub ahead of print). View Article : Google Scholar
|
3
|
Gibson BE, Wheatley K, Hann IM, Stevens
RF, Webb D, Hills RK, De Graaf SS and Harrison CJ: Treatment
strategy and long-term results in paediatric patients treated in
consecutive UK AML trials. Leukemia. 19:2130–2138. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sander A, Zimmermann M, Dworzak M,
Fleischhack G, von Neuhoff C, Reinhardt D, Kaspers GJ and Creutzig
U: Consequent and intensified relapse therapy improved survival in
pediatric AML: Results of relapse treatment in 379 patients of
three consecutive AML-BFM trials. Leukemia. 24:1422–1428. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kaspers GJL, Zimmermann M, Reinhardt D,
Gibson BES, Tamminga RYJ, Aleinikova O, Armendariz H, Dworzak M, Ha
SY, Hasle H, et al: Improved outcome in pediatric relapsed acute
myeloid leukemia: Results of a randomized trial on liposomal
daunorubicin by the International BFM Study Group. J Clin Oncol.
31:599–607. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
White E and DiPaola RS: The double-edged
sword of autophagy modulation in cancer. Clin Cancer Res.
15:5308–5316. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shimizu S: Development of anti-cancer
drugs mediated by apoptosis and autophagy. Nihon Rinsho.
73:1302–1307. 2015.(In Japanese). PubMed/NCBI
|
8
|
Takenawa T and Suetsugu S: The WASP-WAVE
protein network: Connecting the membrane to the cytoskeleton. Nat
Rev Mol Cell Biol. 8:37–48. 2007. View
Article : Google Scholar
|
9
|
Gourlay CW, Carpp LN, Timpson P, Winder SJ
and Ayscough KR: A role for the actin cytoskeleton in cell death
and aging in yeast. J Cell Biol. 164:803–809. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kang R, Tang D, Yu Y, Wang Z, Hu T, Wang H
and Cao L: WAVE1 regulates Bcl-2 localization and phosphorylation
in leukemia cells. Leukemia. 24:177–186. 2010. View Article : Google Scholar
|
11
|
Monastyrska I, Rieter E, Klionsky DJ and
Reggiori F: Multiple roles of the cytoskeleton in autophagy. Biol
Rev Camb Philos Soc. 84:431–448. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Di Bartolomeo S, Corazzari M, Nazio F,
Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C,
Giunta L, et al: The dynamic interaction of AMBRA1 with the dynein
motor complex regulates mammalian autophagy. J Cell Biol.
191:155–168. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Batlevi Y, Martin DN, Pandey UB, Simon CR,
Powers CM, Taylor JP and Baehrecke EH: Dynein light chain 1 is
required for autophagy, protein clearance, and cell death in
Drosophila. Proc Natl Acad Sci USA. 107:742–747. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wrighton KH: Autophagy: Myosin II moves in
on autophagosomes. Nat Rev Mol Cell Biol. 12:772011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cardoso CM, Groth-Pedersen L, Høyer-Hansen
M, Kirkegaard T, Corcelle E, Andersen JS, Jäättelä M and Nylandsted
J: Depletion of kinesin 5B affects lysosomal distribution and
stability and induces peri-nuclear accumulation of autophagosomes
in cancer cells. PLoS One. 4:e44242009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tang HW, Wang YB, Wang SL, Wu MH, Lin SY
and Chen GC: Atg1-mediated myosin II activation regulates
autophagosome formation during starvation-induced autophagy. EMBO
J. 30:636–651. 2011. View Article : Google Scholar :
|
17
|
Jahreiss L, Menzies FM and Rubinsztein DC:
The itinerary of autophagosomes: From peripheral formation to
kiss-and-run fusion with lysosomes. Traffic. 9:574–587. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Fass E, Shvets E, Degani I, Hirschberg K
and Elazar Z: Microtubules support production of starvation-induced
autophagosomes but not their targeting and fusion with lysosomes. J
Biol Chem. 281:36303–36316. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Miki H, Suetsugu S and Takenawa T: WAVE, a
novel WASP-family protein involved in actin reorganization induced
by Rac. EMBO J. 17:6932–6941. 1998. View Article : Google Scholar : PubMed/NCBI
|
20
|
Machesky LM and Insall RH: Scar1 and the
related Wiskott-Aldrich syndrome protein, WASP, regulate the actin
cytoskeleton through the Arp2/3 complex. Curr Biol. 8:1347–1356.
1998. View Article : Google Scholar
|
21
|
Suetsugu S, Miki H and Takenawa T:
Identification of two human WAVE/SCAR homologues as general actin
regulatory molecules which associate with the Arp2/3 complex.
Biochem Biophys Res Commun. 260:296–302. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dahl JP, Wang-Dunlop J, Gonzales C, Goad
ME, Mark RJ and Kwak SP: Characterization of the WAVE1 knock-out
mouse: Implications for CNS development. J Neurosci. 23:3343–3352.
2003.PubMed/NCBI
|
23
|
Rawe VY, Payne C, Navara C and Schatten G:
WAVE1 intra-nuclear trafficking is essential for genomic and
cytoskeletal dynamics during fertilization: Cell-cycle-dependent
shuttling between M-phase and interphase nuclei. Dev Biol.
276:253–267. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yamaguchi H and Condeelis J: Regulation of
the actin cytoskeleton in cancer cell migration and invasion.
Biochim Biophys Acta. 1773:642–652. 2007. View Article : Google Scholar
|
25
|
Yang MH, Zhao MY, Wang Z, Kang R, He YL,
Yin XC, Liu LY, Yang LC, Zhan CX, Wu XS, et al: WAVE1 regulates
P-glycoprotein expression via Ezrin in leukemia cells. Leuk
Lymphoma. 52:298–309. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kang R, Cao LZ, Yu Y, Hu T, Wang Z, Xu WQ
and Xie M: Role of WAVE1 in drug resistance of K562/A02 leukemia
cells. Zhonghua Xue Ye Xue Za Zhi. 28:379–382. 2007.(In Chinese).
PubMed/NCBI
|
27
|
Thorburn A: Apoptosis and Autophagy:
regulatory connections between two supposedly different processes.
Apoptosis. 13:1–9. 2008. View Article : Google Scholar :
|
28
|
Klionsky DJ and Emr SD: Autophagy as a
regulated pathway of cellular degradation. Science. 290:1717–1721.
2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Levine B: Cell biology: Autophagy and
cancer. Nature. 446:745–747. 2007. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu
Y, Xie M, Yin X, Livesey KM, Loze MT, et al: DAMP-mediated
autophagy contributes to drug resistance. Autophagy. 7:112–114.
2011. View Article : Google Scholar :
|
31
|
Mizushima N, Yoshimori T and Levine B:
Methods in mammalian autophagy research. Cell. 140:313–326. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang L, Yu Y, Kang R, Yang M, Xie M, Wang
Z, Tang D, Zhao M, Liu L, Zhang H, et al: Up-regulated autophagy by
endogenous high mobility group box-1 promotes chemoresistance in
leukemia cells. Leuk Lymphoma. 53:315–322. 2012. View Article : Google Scholar
|
33
|
Klionsky DJ, Abeliovich H, Agostinis P,
Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA,
Ballabio A, et al: Guidelines for the use and interpretation of
assays for monitoring autophagy in higher eukaryotes. Autophagy.
4:151–175. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pankiv S, Clausen TH, Lamark T, Brech A,
Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T:
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of
ubiquitinated protein aggregates by autophagy. J Biol Chem.
282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bellodi C, Lidonnici MR, Hamilton A,
Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi
T, Yacobi R, et al: Targeting autophagy potentiates tyrosine kinase
inhibitor-induced cell death in Philadelphia chromosome-positive
cells, including primary CML stem cells. J Clin Invest.
119:1109–1123. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sehgal AR, Konig H, Johnson DE, Tang D,
Amaravadi RK, Boyiadzis M and Lotze MT: You eat what you are:
Autophagy inhibition as a therapeutic strategy in leukemia.
Leukemia. 29:517–525. 2015. View Article : Google Scholar
|
37
|
Sung JY, Engmann O, Teylan MA, Nairn AC,
Greengard P and Kim Y: WAVE1 controls neuronal activity-induced
mitochondrial distribution in dendritic spines. Proc Natl Acad Sci
USA. 105:3112–3116. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hockenbery D, Nuñez G, Milliman C,
Schreiber RD and Korsmeyer SJ: Bcl-2 is an inner mitochondrial
membrane protein that blocks programmed cell death. Nature.
348:334–336. 1990. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pattingre S, Tassa A, Qu X, Garuti R,
Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2
antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell.
122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Petiot A, Ogier-Denis E, Blommaart EFC,
Meijer AJ and Codogno P: Distinct classes of phosphatidylinositol
3′-kinases are involved in signaling pathways that control
macroautophagy in HT-29 cells. J Biol Chem. 275:992–998. 2000.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Sakamoto KM, Grant S, Saleiro D, Crispino
JD, Hijiya N, Giles F, Platanias L and Eklund EA: Targeting novel
signaling pathways for resistant acute myeloid leukemia. Mol Genet
Metab. 114:397–402. 2015. View Article : Google Scholar :
|
42
|
He YL, Cao LZ, Yang J, Yang MH, Xu WQ, Xie
M and Shi Z: Expression of WAVE1 and p22phox in children with acute
lymphocytic leukemia and the relationship of WAVE1 with oxidative
stress. Zhongguo Dang Dai Er Ke Za Zhi. 11:88–92. 2009.(In
Chinese). PubMed/NCBI
|
43
|
Abraham MC and Shaham S: Death without
caspases, caspases without death. Trends Cell Biol. 14:184–193.
2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Apel A, Herr I, Schwarz H, Rodemann HP and
Mayer A: Blocked autophagy sensitizes resistant carcinoma cells to
radiation therapy. Cancer Res. 68:1485–1494. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang Z and Klionsky DJ: Eaten alive: A
history of macroautophagy. Nat Cell Biol. 12:814–822. 2010.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Sinha S and Levine B: The autophagy
effector Beclin 1: A novel BH3-only protein. Oncogene. 27(Suppl 1):
S137–S148. 2008. View Article : Google Scholar
|
47
|
Fratti RA, Backer JM, Gruenberg J, Corvera
S and Deretic V: Role of phosphatidylinositol 3-kinase and Rab5
effectors in phagosomal biogenesis and mycobacterial phagosome
maturation arrest. J Cell Biol. 154:631–644. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Siddhanta U, McIlroy J, Shah A, Zhang Y
and Backer JM: Distinct roles for the p110alpha and hVPS34
phosphatidylinositol 3′-kinases in vesicular trafficking,
regulation of the actin cytoskeleton, and mitogenesis. J Cell Biol.
143:1647–1659. 1998. View Article : Google Scholar : PubMed/NCBI
|