Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features
- Authors:
- Robert Gelfand
- Dolores Vernet
- Kevin Bruhn
- Jaydutt Vadgama
- Nestor F. Gonzalez-Cadavid
-
Affiliations: Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA, Department of Surgery, Los Angeles Biomedical Research Institute (LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA - Published online on: March 29, 2016 https://doi.org/10.3892/ijo.2016.3461
- Pages: 2399-2414
This article is mentioned in:
Abstract
Seitz HK, Pelucchi C, Bagnardi V and La Vecchia C: Epidemiology and pathophysiology of alcohol and breast cancer: Update 2012. Alcohol Alcohol. 47:204–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coronado GD, Beasley J and Livaudais J: Alcohol consumption and the risk of breast cancer. Salud Publica Mex. 53:440–447. 2011. | |
Pelucchi C, Tramacere I, Boffetta P, Negri E and La Vecchia C: Alcohol consumption and cancer risk. Nutr Cancer. 63:983–990. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen WY, Rosner B, Hankinson SE, Colditz GA and Willett WC: Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA. 306:1884–1890. 2011. View Article : Google Scholar : PubMed/NCBI | |
Narod SA: Alcohol and risk of breast cancer. JAMA. 306:1920–1921. 2011. View Article : Google Scholar : PubMed/NCBI | |
Saxena T, Lee E, Henderson KD, Clarke CA, West D, Marshall SF, Deapen D, Bernstein L and Ursin G: Menopausal hormone therapy and subsequent risk of specific invasive breast cancer subtypes in the California Teachers Study. Cancer Epidemiol Biomarkers Prev. 19:2366–2378. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kabat GC, Kim M, Shikany JM, Rodgers AK, Wactawski-Wende J, Lane D, Powell L, Stefanick ML, Freiberg MS, Kazlauskaite R, et al: Alcohol consumption and risk of ductal carcinoma in situ of the breast in a cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev. 19:2066–2072. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wong AW, Dunlap SM, Holcomb VB and Nunez NP: Alcohol promotes mammary tumor development via the estrogen pathway in estrogen receptor alpha-negative HER2/neu mice. Alcohol Clin Exp Res. 36:577–587. 2012. View Article : Google Scholar | |
Wang S, Xu M, Li F, Wang X, Bower KA, Frank JA, Lu Y, Chen G, Zhang Z, Ke Z, et al: Ethanol promotes mammary tumor growth and angiogenesis: The involvement of chemoattractant factor MCP-1. Breast Cancer Res Treat. 133:1037–1048. 2012. View Article : Google Scholar : | |
Masso-Welch PA, Tobias ME, Vasantha Kumar SC, Bodziak M, Mashtare T Jr, Tamburlin J and Koury ST: Folate exacerbates the effects of ethanol on peripubertal mouse mammary gland development. Alcohol. 46:285–292. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hong J, Holcomb VB, Tekle SA, Fan B and Núñez NP: Alcohol consumption promotes mammary tumor growth and insulin sensitivity. Cancer Lett. 294:229–235. 2010. View Article : Google Scholar : PubMed/NCBI | |
Castro GD, de Castro CR, Maciel ME, Fanelli SL, de Ferreyra EC, Gómez MI and Castro JA: Ethanol-induced oxidative stress and acetaldehyde formation in rat mammary tissue: Potential factors involved in alcohol drinking promotion of breast cancer. Toxicology. 219:208–219. 2006. View Article : Google Scholar | |
Watabiki T, Okii Y, Tokiyasu T, Yoshimura S, Yoshida M, Akane A, Shikata N and Tsubura A: Long-term ethanol consumption in ICR mice causes mammary tumor in females and liver fibrosis in males. Alcohol Clin Exp Res. 24(Suppl): S117–S122. 2000. | |
Singletary KW, Frey RS and Yan W: Effect of ethanol on proliferation and estrogen receptor-alpha expression in human breast cancer cells. Cancer Lett. 165:131–137. 2001. View Article : Google Scholar : PubMed/NCBI | |
Etique N, Chardard D, Chesnel A, Merlin JL, Flament S and Grillier-Vuissoz I: Ethanol stimulates proliferation, ERalpha and aromatase expression in MCF-7 human breast cancer cells. Int J Mol Med. 13:149–155. 2004. | |
Etique N, Flament S, Lecomte J and Grillier-Vuissoz I: Ethanol-induced ligand-independent activation of ERalpha mediated by cyclic AMP/PKA signaling pathway: An in vitro study on MCF-7 breast cancer cells. Int J Oncol. 31:1509–1518. 2007.PubMed/NCBI | |
Etique N, Grillier-Vuissoz I, Lecomte J and Flament S: Crosstalk between adenosine receptor (A2A isoform) and ERalpha mediates ethanol action in MCF-7 breast cancer cells. Oncol Rep. 21:977–981. 2009.PubMed/NCBI | |
Przylipiak A, Rabe T, Hafner J, Przylipiak M and Runnebaum R: Influence of ethanol on in vitro growth of human mammary carcinoma cell line MCF-7. Arch Gynecol Obstet. 258:137–140. 1996. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Gao B, Goldberg ID, Rosen EM and Fan S: Stimulation of cell invasion and migration by alcohol in breast cancer cells. Biochem Biophys Res Commun. 273:448–453. 2000. View Article : Google Scholar : PubMed/NCBI | |
Luo J and Miller MW: Ethanol enhances erbB-mediated migration of human breast cancer cells in culture. Breast Cancer Res Treat. 63:61–69. 2000. View Article : Google Scholar : PubMed/NCBI | |
Izevbigie EB, Ekunwe SI, Jordan J and Howard CB: Ethanol modulates the growth of human breast cancer cells in vitro. Exp Biol Med (Maywood). 227:260–265. 2002. | |
Etique N, Chardard D, Chesnel A, Flament S and Grillier-Vuissoz I: Analysis of the effects of different alcohols on MCF-7 human breast cancer cells. Ann N Y Acad Sci. 1030:78–85. 2004. View Article : Google Scholar | |
Etique N, Grillier-Vuissoz I and Flament S: Ethanol stimulates the secretion of matrix metalloproteinases 2 and 9 in MCF-7 human breast cancer cells. Oncol Rep. 15:603–608. 2006.PubMed/NCBI | |
Vernet D, Gelfand R, Sarkissyan S, Heber D, Vadgama J and Gonzalez-Cadavid NF: Long-term exposure of breast cell lines to ethanol affects the transcriptional signature for some oncogenic gene families, but has little effect on this phenotype in mammospheres or on the expression of stem cell markers. Cancer Res. 71(Suppl 8): 55592011. View Article : Google Scholar | |
Zhang Q, Jin J, Zhong Q, Yu X, Levy D and Zhong S: ERα mediates alcohol-induced deregulation of Pol III genes in breast cancer cells. Carcinogenesis. 34:28–37. 2013. View Article : Google Scholar : | |
Dai J, Jian J, Bosland M, Frenkel K, Bernhardt G and Huang X: Roles of hormone replacement therapy and iron in proliferation of breast epithelial cells with different estrogen and progesterone receptor status. Breast. 17:172–179. 2008. View Article : Google Scholar | |
Feifei N, Mingzhi Z, Yanyun Z, Huanle Z, Fang R, Mingzhu H, Mingzhi C, Yafei S and Fengchun Z: MicroRNA expression analysis of mammospheres cultured from human breast cancers. J Cancer Res Clin Oncol. 138:1937–1944. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cortez MA, Welsh JW and Calin GA: Circulating microRNAs as noninvasive biomarkers in breast cancer. Recent Results Cancer Res. 195:151–161. 2012. View Article : Google Scholar : PubMed/NCBI | |
Krell J, Frampton AE, Jacob J, Castellano L and Stebbing J: miRNA sin breast cancer: Ready for real time? Pharmacogenomics. 13:709–719. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shore AN, Herschkowitz JI and Rosen JM: Noncoding RNAs involved in mammary gland development and tumorigenesis: There's a long way to go. J Mammary Gland Biol Neoplasia. 17:43–58. 2012. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S: Roles of microRNAs and other non-coding RNAs in breast cancer metastasis. J Mammary Gland Biol Neoplasia. 17:23–32. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fernandez SV: Estrogen, alcohol consumption, and breast cancer. Alcohol Clin Exp Res. 35:389–391. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Cobo M, Holland JF and Pogo BG: Transcription profiles of non-immortalized breast cancer cell lines. BMC Cancer. 6:992006. View Article : Google Scholar : PubMed/NCBI | |
Seitz HK and Stickel F: Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 7:599–612. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hirano T: Alcohol consumption and oxidative DNA damage. Int J Environ Res Public Health. 8:2895–2906. 2011. View Article : Google Scholar : PubMed/NCBI | |
Balbo S, Meng L, Bliss RL, Jensen JA, Hatsukami DK and Hecht SS: Time course of DNA adduct formation in peripheral blood granulocytes and lymphocytes after drinking alcohol. Mutagenesis. 27:485–490. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seitz HK and Stickel F: Acetaldehyde as an underestimated risk factor for cancer development: Role of genetics in ethanol metabolism. Genes Nutr. 5:121–128. 2010. View Article : Google Scholar : | |
Jelski W, Chrostek L, Szmitkowski M and Markiewicz W: The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in breast cancer. Clin Exp Med. 6:89–93. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guttilla IK, Adams BD and White BA: ERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab. 23:73–82. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jain P and Alahari SK: Breast cancer stem cells: A new challenge for breast cancer treatment. Front Biosci (Landmark Ed). 16:1824–1832. 2011. View Article : Google Scholar | |
Di Cello F, Flowers VL, Li H, Vecchio-Pagán B, Gordon B, Harbom K, Shin J, Beaty R, Wang W, Brayton C, et al: Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells. Mol Cancer. 12:902013. View Article : Google Scholar : PubMed/NCBI | |
Schedin PJ, Eckel-Mahan KL, McDaniel SM, Prescott JD, Brodsky KS, Tentler JJ and Gutierrez-Hartmann A: ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells. Oncogene. 23:1766–1779. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chan IS, Guy CD, Machado MV, Wank A, Kadiyala V, Michelotti G, Choi S, Swiderska-Syn M, Karaca G, Pereira TA, et al: Alcohol activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol Clin Exp Res. 38:787–800. 2014. View Article : Google Scholar : | |
Ward ST, Dangi-Garimella S, Shields MA, Collander BA, Siddiqui MA, Krantz SB and Munshi HG: Ethanol differentially regulates snail family of transcription factors and invasion of premalignant and malignant pancreatic ductal cells. J Cell Biochem. 112:2966–2973. 2011. View Article : Google Scholar : PubMed/NCBI | |
Forsyth CB, Tang Y, Shaikh M, Zhang L and Keshavarzian A: Alcohol stimulates activation of Snail, epidermal growth factor receptor signaling, and biomarkers of epithelial-mesenchymal transition in colon and breast cancer cells. Alcohol Clin Exp Res. 34:19–31. 2010. View Article : Google Scholar | |
Reed TE, Kalant H, Gibbins RJ, Kapur BM and Rankin JG: Alcohol and acetaldehyde metabolism in Caucasians, Chinese and Amerinds. Can Med Assoc J. 115:851–855. 1976.PubMed/NCBI | |
Shimada J, Miyahara T, Otsubo S, Yoshimatsu N, Oguma T and Matsubara T: Effects of alcohol-metabolizing enzyme inhibitors and beta-lactam antibiotics on ethanol elimination in rats. Jpn J Pharmacol. 45:533–544. 1987. View Article : Google Scholar : PubMed/NCBI | |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hilmarsdottir B, Briem E, Bergthorsson JT, Magnusson MK and Gudjonsson T: Functional role of the microRNA-200 family in breast morphogenesis and neoplasia. Genes (Basel). 5:804–820. 2014. | |
Wu H and Mo YY: Targeting miR-205 in breast cancer. Expert Opin Ther Targets. 13:1439–1448. 2009. View Article : Google Scholar : PubMed/NCBI | |
Orang AV, Safaralizadeh R and Hosseinpour Feizi MA: Insights into the diverse roles of miR-205 in human cancers. Asian Pac J Cancer Prev. 15:577–583. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zheng X, Shen C and Shi Y: MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. J Exp Clin Cancer Res. 31:582012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z and Dong JT: Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer. 2:782–791. 2011. View Article : Google Scholar | |
Zhang X, Schulz R, Edmunds S, Krüger E, Markert E, Gaedcke J, Cormet-Boyaka E, Ghadimi M, Beissbarth T, Levine AJ, et al: MicroRNA-101 suppresses tumor cell proliferation by acting as an endogenous proteasome inhibitor via targeting the proteasome assembly factor POMP. Mol Cell. 59:243–257. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Lei Q, Yu Z, Xu G, Tang H, Wang W, Wang Z, Li G and Wu M: MiR-101 reverses the hypomethylation of the LMO3 promoter in glioma cells. Oncotarget. 6:7930–7943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jia Z, Wang K, Zhang A, Wang G, Kang C, Han L and Pu P: miR-19a and miR-19b overexpression in gliomas. Pathol Oncol Res. 19:847–853. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xia W, Ni J, Zhuang J, Qian L, Wang P and Wang J: MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12. Int J Biochem Cell Biol. 71:1–11. 2016. View Article : Google Scholar | |
Sibbesen NA, Kopp KL, Litvinov IV, Jønson L, Willerslev-Olsen A, Fredholm S, Petersen DL, Nastasi C, Krejsgaard T, Lindahl LM, et al: Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget. 6:20555–20569. 2015. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S and Weinberg RA: miR-31: A crucial overseer of tumor metastasis and other emerging roles. Cell Cycle. 9:2124–2129. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Lee KS, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Yang HD, Park M, Park WS, et al: MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget. 6:8089–8102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ono S, Ishizaki Y, Tokuda E, Tabata K, Asami S and Suzuki T: Different patterns in the induction of metallothionein mRNA synthesis among isoforms after acute ethanol administration. Biol Trace Elem Res. 115:147–156. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pedersen MO, Larsen A, Stoltenberg M and Penkowa M: The role of metallothionein in oncogenesis and cancer prognosis. Prog Histochem Cytochem. 44:29–64. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fu C, Di L, Han X, Soderstrom C, Snyder M, Troutman MD, Obach RS and Zhang H: Aldehyde oxidase 1 (AOX1) in human liver cytosols: Quantitative characterization of AOX1 expression level and activity relationship. Drug Metab Dispos. 41:1797–1804. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Miao Q, Wang C, Zhao R, Li W, Haile CN, Hao W and Zhang XY: Genome-wide DNA methylation analysis in alcohol dependence. Addict Biol. 18:392–403. 2013. View Article : Google Scholar : PubMed/NCBI | |
Do TV, Kubba LA, Du H, Sturgis CD and Woodruff TK: Transforming growth factor-beta1, transforming growth factor-beta2, and transforming growth factor-beta3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Mol Cancer Res. 6:695–705. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kimura C, Hayashi M, Mizuno Y and Oike M: Endothelium-dependent epithelial-mesenchymal transition of tumor cells: Exclusive roles of transforming growth factor β1 and β2. Biochim Biophys Acta. 1830.4470–4481. 2013. | |
Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ and Feng YM: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 110:724–732. 2014. View Article : Google Scholar : | |
Maleszewska M, Moonen JR, Huijkman N, van de Sluis B, Krenning G and Harmsen MC: IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology. 218:443–454. 2013. View Article : Google Scholar | |
Yang Z, Sun L, Nie H, Liu H, Liu G and Guan G: Connective tissue growth factor induces tubular epithelial to mesenchymal transition through the activation of canonical Wnt signaling in vitro. Ren Fail. 37:129–135. 2015. View Article : Google Scholar | |
Natsuizaka M, Ohashi S, Wong GS, Ahmadi A, Kalman RA, Budo D, Klein-Szanto AJ, Herlyn M, Diehl JA and Nakagawa H: Insulin-like growth factor-binding protein-3 promotes transforming growth factor-{beta}1-mediated epithelial-to-mesenchymal transition and motility in transformed human esophageal cells. Carcinogenesis. 31:1344–1353. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vijayan A, Guha D, Ameer F, Kaziri I, Mooney CC, Bennett L, Sureshbabu A, Tonner E, Beattie J, Allan GJ, et al: IGFBP-5 enhances epithelial cell adhesion and protects epithelial cells from TGFβ1-induced mesenchymal invasion. Int J Biochem Cell Biol. 45:2774–2785. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mehta HH, Gao Q, Galet C, Paharkova V, Wan J, Said J, Sohn JJ, Lawson G, Cohen P, Cobb LJ, et al: IGFBP-3 is a metastasis suppression gene in prostate cancer. Cancer Res. 71:5154–5163. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kalla Singh S, Tan QW, Brito C, De León M and De León D: Insulin-like growth factors I and II receptors in the breast cancer survival disparity among African-American women. Growth Horm IGF Res. 20:245–254. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takkunen M, Ainola M, Vainionpää N, Grenman R, Patarroyo M, García de Herreros A, Konttinen YT and Virtanen I: Epithelial-mesenchymal transition downregulates laminin alpha5 chain and upregulates laminin alpha4 chain in oral squamous carcinoma cells. Histochem Cell Biol. 130:509–525. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V, Vlassi M, Spyridakis Y, Tsipras I, Zografos G, et al: Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGβ4-PDCD4) as predictor of metastatic tumor potential. Epigenetics. 9:129–141. 2014. View Article : Google Scholar : | |
Stebbing J, Filipović A and Giamas G: Claudin-1 as a promoter of EMT in hepatocellular carcinoma. Oncogene. 32:4871–4872. 2013. View Article : Google Scholar : PubMed/NCBI | |
Geiger T, Sabanay H, Kravchenko-Balasha N, Geiger B and Levitzki A: Anomalous features of EMT during keratinocyte transformation. PLoS One. 3:e15742008. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q and Greenberg RA: Deciphering the BRCA1 tumor suppressor network. J Biol Chem. 290:17724–17732. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee H: Cycling with BRCA2 from DNA repair to mitosis. Exp Cell Res. 329:78–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, Ravdin P, Bugarini R, Baehner FL, Davidson NE, et al; Breast Cancer Intergroup of North America. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: A retrospective analysis of a randomised trial. Lancet Oncol. 11:55–65. 2010. View Article : Google Scholar | |
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, et al: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 351:2817–2826. 2004. View Article : Google Scholar : PubMed/NCBI |