Multiple myeloma and persistence of drug resistance in the age of novel drugs (Review)
- Authors:
- Sabna Rajeev Krishnan
- Ritu Jaiswal
- Ross D. Brown
- Frederick Luk
- Mary Bebawy
-
Affiliations: Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia - Published online on: May 11, 2016 https://doi.org/10.3892/ijo.2016.3516
- Pages: 33-50
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Malpas JS: Management of multiple myeloma. BMJ. 2:163–165. 1969. View Article : Google Scholar : PubMed/NCBI | |
Kyle RA and Rajkumar SV: Treatment of multiple myeloma: A comprehensive review. Clin Lymphoma Myeloma. 9:278–288. 2009. View Article : Google Scholar : PubMed/NCBI | |
Katz BZ: Adhesion molecules - The lifelines of multiple myeloma cells. Semin Cancer Biol. 20:186–195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barlogie B, Alexanian R and Jagannath S: Plasma cell dyscrasias. JAMA. 268:2946–2951. 1992. View Article : Google Scholar : PubMed/NCBI | |
Reid S, Yang S, Brown R, Kabani K, Aklilu E, Ho PJ, Woodland N and Joshua D: Characterisation and relevance of CD138-negative plasma cells in plasma cell myeloma. Int J Lab Hematol. 32:e190–e196. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dimopoulos MA and Terpos E: Multiple myeloma. Ann Oncol. 21(Suppl 7): vii143–vii150. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kyle RA: Multiple myeloma: How did it begin? Mayo Clin Proc. 69:680–683. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kyle RA: Multiple myeloma: An odyssey of discovery. Br J Haematol. 111:1035–1044. 2000. View Article : Google Scholar | |
Durie BG, Harousseau JL, Miguel JS, Bladé J, Barlogie B, Anderson K, Gertz M, Dimopoulos M, Westin J, Sonneveld P, et al; International Myeloma Working Group. International uniform response criteria for multiple myeloma. Leukemia. 20:1467–1473. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, Kumar S, Hillengass J, Kastritis E, Richardson P, et al: International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15:e538–e548. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martin NH: The immunoglobulins: A review. J Clin Pathol. 22:117–131. 1969. View Article : Google Scholar : PubMed/NCBI | |
Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ and Prince HM: Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 24:22–32. 2010. View Article : Google Scholar | |
Barlogie B, Shaughnessy J, Tricot G, Jacobson J, Zangari M, Anaissie E, Walker R and Crowley J: Treatment of multiple myeloma. Blood. 103:20–32. 2004. View Article : Google Scholar | |
Merchionne F, Perosa F and Dammacco F: New therapies in multiple myeloma. Clin Exp Med. 7:83–97. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sonneveld P, Schoester M and de Leeuw K: Clinical modulation of multidrug resistance in multiple myeloma: Effect of cyclosporine on resistant tumor cells. J Clin Oncol. 12:1584–1591. 1994.PubMed/NCBI | |
Sonneveld P, Durie BG, Lokhorst HM, Marie JP, Solbu G, Suciu S, Zittoun R, Löwenberg B and Nooter K; The Leukaemia Group of the EORTC and the HOVON. Modulation of multidrug-resistant multiple myeloma by cyclosporin. Lancet. 340:255–259. 1992. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Jaiswal R, Mathys JM, Combes V, Grau GE and Bebawy M: Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev. 38:226–234. 2012. View Article : Google Scholar | |
Biedler JL and Riehm H: Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 30:1174–1184. 1970.PubMed/NCBI | |
Turesson I, Velez R, Kristinsson SY and Landgren O: Patterns of improved survival in patients with multiple myeloma in the twenty-first century: A population-based study. J Clin Oncol. 28:830–834. 2010. View Article : Google Scholar : | |
Decaux O, Lodé L, Magrangeas F, Charbonnel C, Gouraud W, Jézéquel P, Attal M, Harousseau JL, Moreau P, Bataille R, et al; Intergroupe Francophone du Myélome. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: A study of the Intergroupe Francophone du Myélome. J Clin Oncol. 26:4798–4805. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garrison LP Jr, Wang ST, Huang H, Ba-Mancini A, Shi H, Chen K, Korves C, Dhawan R, Cakana A, van de Velde H, et al: The cost-effectiveness of initial treatment of multiple myeloma in the U.S. with bortezomib plus melphalan and prednisone versus thalidomide plus melphalan and prednisone or lenalidomide plus melphalan and prednisone with continuous lenalidomide maintenance treatment. Oncologist. 18:27–36. 2013. View Article : Google Scholar : | |
Gaultney JG, Franken MG, Tan SS, Redekop WK, Huijgens PC, Sonneveld P and Uyl-de Groot CA: Real-world health care costs of relapsed/refractory multiple myeloma during the era of novel cancer agents. J Clin Pharm Ther. 38:41–47. 2013. View Article : Google Scholar | |
Goodwin JA, Coleman EA, Sullivan E, Easley R, McNatt PK, Chowdhury N and Stewart CB: Personal Financial Effects of Multiple Myeloma and Its Treatment. Cancer Nurs. 36:301–308. 2013. View Article : Google Scholar | |
Durie B, Binder G, Pashos C, Khan Z, Hussein M and Borrello I: Total cost comparison in relapsed/refractory multiple myeloma. J Med Econ. 16:614–622. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bergsagel D: The incidence and epidemiology of plasma cell neoplasms. Stem Cells. 13(Suppl 2): 1–9. 1995.PubMed/NCBI | |
Chen-Kiang S: Cell-cycle control of plasma cell differentiation and tumorigenesis. Immunol Rev. 194:39–47. 2003. View Article : Google Scholar : PubMed/NCBI | |
Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM, Bos NA, Johnsen HE, Orfao A and Perez-Andres M; Myeloma Stem Cell Network. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138− and CD138+ plasma cells. Haematologica. 95:1016–1020. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, Geuna M and Malavasi F: CD38 molecule: Structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol. 145:878–884. 1990.PubMed/NCBI | |
Ruiz-Argüelles GJ and San Miguel JF: Cell surface markers in multiple myeloma. Mayo Clin Proc. 69:684–690. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kara IO, Sahin B, Paydas S and Cetiner S: Flow cytometric evaluation of bone marrow plasma cells using CD19, CD45, CD56, CD38, and CD138 and correlation with bone marrow infiltration ratio in multiple myeloma patients. Saudi Med J. 25:1587–1592. 2004.PubMed/NCBI | |
Rawstron AC: Immunophenotyping of plasma cells. Curr Protoc Cytom. 2006.Chapter 6:Unit6.23 | |
Bayer-Garner IB, Sanderson RD, Dhodapkar MV, Owens RB and Wilson CS: Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: Shed syndecan-1 accumulates in fibrotic regions. Mod Pathol. 14:1052–1058. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tokoyoda K, Hauser AE, Nakayama T and Radbruch A: Organization of immunological memory by bone marrow stroma. Nat Rev Immunol. 10:193–200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moser K, Tokoyoda K, Radbruch A, MacLennan I and Manz RA: Stromal niches, plasma cell differentiation and survival. Curr Opin Immunol. 18:265–270. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vande Broek I, Vanderkerken K, Van Camp B and Van Riet I: Extravasation and homing mechanisms in multiple myeloma. Clin Exp Metastasis. 25:325–334. 2008. View Article : Google Scholar | |
Alexander DD, Mink PJ, Adami HO, Cole P, Mandel JS, Oken MM and Trichopoulos D: Multiple myeloma: A review of the epidemiologic literature. Int J Cancer. 120(Suppl 12): 40–61. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brigden ML: The search for meaning in monoclonal protein. Is it multiple myeloma or monoclonal gammopathy of undetermined significance? Postgrad Med. 106:135–142; quiz 185. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF and Melton LJ III: A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 346:564–569. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, Davies FE, Drach J, Greipp PR, Kirsch IR, et al: Genetics and cytogenetics of multiple myeloma: A workshop report. Cancer Res. 64:1546–1558. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pilarski LM and Belch AR: Circulating monoclonal B cells expressing P glycoprotein may be a reservoir of multidrug-resistant disease in multiple myeloma. Blood. 83:724–736. 1994.PubMed/NCBI | |
Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B and Shaughnessy J Jr: Cyclin D dysregulation: An early and unifying pathogenic event in multiple myeloma. Blood. 106:296–303. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hundemer M, Klein U, Hose D, Raab MS, Cremer FW, Jauch A, Benner A, Heiss C, Moos M, Ho AD, et al: Lack of CD56 expression on myeloma cells is not a marker for poor prognosis in patients treated by high-dose chemotherapy and is associated with translocation t(11;14). Bone Marrow Transplant. 40:1033–1037. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chang H, Samiee S and Yi QL: Prognostic relevance of CD56 expression in multiple myeloma: A study including 107 cases treated with high-dose melphalan-based chemotherapy and autologous stem cell transplant. Leuk Lymphoma. 47:43–47. 2006. View Article : Google Scholar | |
Van Camp B, Durie BG, Spier C, De Waele M, Van Riet I, Vela E, Frutiger Y, Richter L and Grogan TM: Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood. 76:377–382. 1990.PubMed/NCBI | |
Van Riet I and Van Camp B: The involvement of adhesion molecules in the biology of multiple myeloma. Leuk Lymphoma. 9:441–452. 1993. View Article : Google Scholar : PubMed/NCBI | |
Rawstron AC, Owen RG, Davies FE, Johnson RJ, Jones RA, Richards SJ, Evans PA, Child JA, Smith GM, Jack AS, et al: Circulating plasma cells in multiple myeloma: Characterization and correlation with disease stage. Br J Haematol. 97:46–55. 1997. View Article : Google Scholar : PubMed/NCBI | |
O'Connell FP, Pinkus JL and Pinkus GS: CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol. 121:254–263. 2004. View Article : Google Scholar : PubMed/NCBI | |
Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, Smith BD, Civin CI and Jones RJ: Characterization of clonogenic multiple myeloma cells. Blood. 103:2332–2336. 2004. View Article : Google Scholar | |
Kyle RA and Rajkumar SV: Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 23:3–9. 2009. View Article : Google Scholar : | |
Palumbo A, Attal M and Roussel M: Shifts in the therapeutic paradigm for patients newly diagnosed with multiple myeloma: Maintenance therapy and overall survival. Clin Cancer Res. 17:1253–1263. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lonial S and Kaufman JL: Non-secretory myeloma: a clinician's guide. Oncology (Williston Park). 27:924–930. 2013. | |
Cavo M, Rajkumar SV, Palumbo A, Moreau P, Orlowski R, Bladé J, Sezer O, Ludwig H, Dimopoulos MA, Attal M, et al; International Myeloma Working Group. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. Blood. 117:6063–6073. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fernández de Larrea C, Delforge M, Davies F and Bladé J: Response evaluation and monitoring of multiple myeloma. Expert Rev Hematol. 7:33–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Bladé J, Boccadoro M, Child JA, Avet-Loiseau H, Kyle RA, et al: International staging system for multiple myeloma. J Clin Oncol. 23:3412–3420. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hari PN, Zhang MJ, Roy V, Pérez WS, Bashey A, To LB, Elfenbein G, Freytes CO, Gale RP, Gibson J, et al: Is the International Staging System superior to the Durie-Salmon staging system? A comparison in multiple myeloma patients undergoing autologous transplant. Leukemia. 23:1528–1534. 2009. View Article : Google Scholar : PubMed/NCBI | |
Durie BG and Salmon SE: A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 36:842–854. 1975. View Article : Google Scholar : PubMed/NCBI | |
Salmon SE and Durie BG: Cellular kinetics in multiple myeloma. A new approach to staging and treatment. Arch Intern Med. 135:131–138. 1975. View Article : Google Scholar : PubMed/NCBI | |
Palumbo A, Bringhen S, Falco P, Cavallo F, Ambrosini MT, Avonto I, Gay F, Caravita T, Bruno B and Boccadoro M: Time to first disease progression, but not beta2-microglobulin, predicts outcome in myeloma patients who receive thalidomide as salvage therapy. Cancer. 110:824–829. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hungria VT, Maiolino A, Martinez G, Colleoni GW, Coelho EO, Rocha L, Nunes R, Bittencourt R, Oliveira LC, Faria RM, et al; International Myeloma Working Group Latin America. Confirmation of the utility of the International Staging System and identification of a unique pattern of disease in Brazilian patients with multiple myeloma. Haematologica. 93:791–792. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kuehl WM and Bergsagel PL: Multiple myeloma: Evolving genetic events and host interactions. Nat Rev Cancer. 2:175–187. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sawyer JR: The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet. 204:3–12. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stewart AK and Fonseca R: Prognostic and therapeutic significance of myeloma genetics and gene expression profiling. J Clin Oncol. 23:6339–6344. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liebisch P and Döhner H: Cytogenetics and molecular cytogenetics in multiple myeloma. Eur J Cancer. 42:1520–1529. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kuehl WM and Bergsagel PL: Early genetic events provide the basis for a clinical classification of multiple myeloma. Hematology Am Soc Hematol Educ Program. 2005:346–352. 2005. | |
Pichiorri F, De Luca L and Aqeilan RI: MicroRNAs: New players in multiple myeloma. Front Genet. 2:222011. View Article : Google Scholar | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, et al: E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 13:272–286. 2008. View Article : Google Scholar : PubMed/NCBI | |
Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F, Runnels J, Jia X, Ngo HT, Melhem MR, et al: MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood. 113:6669–6680. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Hong CH, Rosen L, Vescio RA, Smulson M, Lichtenstein AK and Berenson JR: Deletion of genetic material from a poly(ADP-ribose) polymerase-like gene on chromosome 13 occurs frequently in patients with monoclonal gammopathies. Cancer Epidemiol Biomarkers Prev. 4:759–763. 1995.PubMed/NCBI | |
Lopes da Silva R, Monteiro A and Veiga J: Non-secretory multiple myeloma relapsing as extramedullary liver plasmacytomas. J Gastrointestin Liver Dis. 20:81–83. 2011.PubMed/NCBI | |
Mehta J and Singhal S: Hyperviscosity syndrome in plasma cell dyscrasias. Semin Thromb Hemost. 29:467–471. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brown JH and Doherty CC: Renal replacement therapy in multiple myeloma and systemic amyloidosis. Postgrad Med J. 69:672–678. 1993. View Article : Google Scholar : PubMed/NCBI | |
Goldschmidt H, Lannert H, Bommer J and Ho AD: Multiple myeloma and renal failure. Nephrol Dial Transplant. 15:301–304. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yaccoby S: The phenotypic plasticity of myeloma plasma cells as expressed by dedifferentiation into an immature, resilient, and apoptosis-resistant phenotype. Clin Cancer Res. 11:7599–7606. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yaccoby S: Advances in the understanding of myeloma bone disease and tumour growth. Br J Haematol. 149:311–321. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brown R, Kabani K, Favaloro J, Yang S, Ho PJ, Gibson J, Fromm P, Suen H, Woodland N, Nassif N, Hart D and Joshua D: CD86+ or HLA-G+ myeloma cells are associated with poor prognosis and once acquired by trogocytosis create novel Tregacq cells. Blood. 120:2055–2063. 2012. View Article : Google Scholar : PubMed/NCBI | |
Osborne DG and Wetzel SA: Trogocytosis results in sustained intracellular signaling in CD4(+) T cells. J Immunol. 189:4728–4739. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cook G: Has the T cell bitten off more than it can chew? Blood. 120:1966–1967. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nau KC and Lewis WD: Multiple myeloma: Diagnosis and treatment. Am Fam Physician. 78:853–859. 2008.PubMed/NCBI | |
Tanaka Y1, Abe M, Hiasa M, Oda A, Amou H, Nakano A, Takeuchi K, Kitazoe K, Kido S, Inoue D, et al: Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res. 13:816–823. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, et al: Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: A vicious cycle between bone destruction and myeloma expansion. Blood. 104:2484–2491. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Chauhan D, Schlossman R, Richardson P and Anderson KC: The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: Therapeutic applications. Oncogene. 20:4519–4527. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ge NL and Rudikoff S: Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood. 96:2856–2861. 2000.PubMed/NCBI | |
Hideshima T and Anderson KC: Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer. 2:927–937. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brenne AT, Ro TB, Waage A, Sundan A, Borset M and Hjorth-Hansen H: Interleukin-21 is a growth and survival factor for human myeloma cells. Blood. 99:3756–3762. 2002. View Article : Google Scholar : PubMed/NCBI | |
Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, et al: Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 98:428–435. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D, Richardson P, Munshi N and Anderson KC: The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther. 1:539–544. 2002.PubMed/NCBI | |
Sanz-Rodríguez F and Teixidó J: VLA-4-dependent myeloma cell adhesion. Leuk Lymphoma. 41:239–245. 2001. View Article : Google Scholar : PubMed/NCBI | |
Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR and Yoneda T: Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4) beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood. 96:1953–1960. 2000.PubMed/NCBI | |
Abdi J, Chen G and Chang H: Drug resistance in multiple myeloma: Latest findings and new concepts on molecular mechanisms. Oncotarget. 4:2186–2207. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL and Anderson KC: IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol. 159:2212–2221. 1997.PubMed/NCBI | |
Hideshima T, Nakamura N, Chauhan D and Anderson KC: Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 20:5991–6000. 2001. View Article : Google Scholar : PubMed/NCBI | |
Burger R, Le Gouill S, Tai YT, Shringarpure R, Tassone P, Neri P, Podar K, Catley L, Hideshima T, Chauhan D, et al: Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther. 8:26–35. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Galeb S and Djulbegovic B: Treatment of patients with multiple myeloma: An overview of systematic reviews. Acta Haematol. 125:8–22. 2011. View Article : Google Scholar | |
Andhavarapu S and Roy V: Immunomodulatory drugs in multiple myeloma. Expert Rev Hematol. 6:69–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
Knight R: IMiDs: A novel class of immunomodulators. Semin Oncol. 32(Suppl 5): S24–S30. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ludwig H, Adam Z, Tóthová E, Hajek R, Labar B, Egyed M, Spicka I, Gisslinger H, Drach J, Kuhn I, et al: Thalidomide maintenance treatment increases progression-free but not overall survival in elderly patients with myeloma. Haematologica. 95:1548–1554. 2010. View Article : Google Scholar : PubMed/NCBI | |
Palumbo A, Miguel JS, Sonneveld P, Moreau P, Drach J, Morgan G and Einsele H: Lenalidomide: A new therapy for multiple myeloma. Cancer Treat Rev. 34:283–291. 2008. View Article : Google Scholar : PubMed/NCBI | |
Richardson P and Anderson K: Thalidomide and dexamethasone: A new standard of care for initial therapy in multiple myeloma. J Clin Oncol. 24:334–336. 2006. View Article : Google Scholar | |
Rajkumar SV, Dispenzieri A, Fonseca R, Lacy MQ, Geyer S, Lust JA, Kyle RA, Greipp PR, Gertz MA and Witzig TE: Thalidomide for previously untreated indolent or smoldering multiple myeloma. Leukemia. 15:1274–1276. 2001. View Article : Google Scholar : PubMed/NCBI | |
Prince HM, Schenkel B and Mileshkin L: An analysis of clinical trials assessing the efficacy and safety of single-agent thalidomide in patients with relapsed or refractory multiple myeloma. Leuk Lymphoma. 48:46–55. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cavo M, Zamagni E, Tosi P, Cellini C, Cangini D, Tacchetti P, Testoni N, Tonelli M, de Vivo A, Palareti G, et al: First-line therapy with thalidomide and dexamethasone in preparation for autologous stem cell transplantation for multiple myeloma. Haematologica. 89:826–831. 2004.PubMed/NCBI | |
Rajkumar SV, Blood E, Vesole D, Fonseca R and Greipp PR; Eastern Cooperative Oncology Group. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 24:431–436. 2006. View Article : Google Scholar | |
Wu P, Davies FE, Horton C, Jenner MW, Krishnan B, Alvares CL, Saso R, McCormack R, Dines S, Treleaven JG, et al: The combination of cyclophosphomide, thalidomide and dexamethasone is an effective alternative to cyclophosphamide - vincristine - doxorubicin - methylprednisolone as induction chemotherapy prior to autologous transplantation for multiple myeloma: A case-matched analysis. Leuk Lymphoma. 47:2335–2338. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dimopoulos MA, Hamilos G, Zomas A, Gika D, Efstathiou E, Grigoraki V, Poziopoulos C, Xilouri I, Zorzou MP, Anagnostopoulos N, et al: Pulsed cyclophosphamide, thalidomide and dexamethasone: An oral regimen for previously treated patients with multiple myeloma. Hematol J. 5:112–117. 2004. View Article : Google Scholar : PubMed/NCBI | |
García-Sanz R, González-Fraile MI, Sierra M, López C, González M and San Miguel JF: The combination of thalidomide, cyclophosphamide and dexamethasone (ThaCyDex) is feasible and can be an option for relapsed/refractory multiple myeloma. Hematol J. 3:43–48. 2002. View Article : Google Scholar : PubMed/NCBI | |
Morgan GJ, Jackson GH, Davies FE, Drayson MT, Owen RG, Gregory WM, Cohen DC, Szubert AJ, Bell SE, Ross F and Child JA: Maintenance thalidomide may improve progression free but not overall survival; results from the Myeloma IX Maintenance Randomisation. Blood (ASH Annual Meeting Abstracts). 112:6562008. | |
Morgan GJ, Gregory WM, Davies FE, Bell SE, Szubert AJ, Brown JM, Coy NN, Cook G, Russell NH, Rudin C, Roddie H, Drayson MT, Owen RG, Ross FM, Jackson GH and Child JA; National Cancer Research Institute Haematological Oncology Clinical Studies Group. The role of maintenance thalidomide therapy in multiple myeloma: MRC myeloma IX results and meta-analysis. Blood. 119:7–15. 2012. View Article : Google Scholar | |
Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M, Agrawal S, Stec J, Schenkein D, Esseltine DL, et al: PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol. 129:755–762. 2005. View Article : Google Scholar : PubMed/NCBI | |
Popat R, Oakervee HE, Hallam S, Curry N, Odeh L, Foot N, Esseltine DL, Drake M, Morris C and Cavenagh JD: Bortezomib, doxorubicin and dexamethasone (PAD) front-line treatment of multiple myeloma: Updated results after long-term follow-up. Br J Haematol. 141:512–516. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mateos MV, Hernández JM, Hernández MT, Gutiérrez NC, Palomera L, Fuertes M, Díaz-Mediavilla J, Lahuerta JJ, de la Rubia J, Terol MJ, et al: Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: Results of a multicenter phase 1/2 study. Blood. 108:2165–2172. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rajkumar SV, Hayman SR, Lacy MQ, Dispenzieri A, Geyer SM, Kabat B, Zeldenrust SR, Kumar S, Greipp PR, Fonseca R, et al: Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood. 106:4050–4053. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bladé J, Samson D, Reece D, Apperley J, Björkstrand B, Gahrton G, Gertz M, Giralt S, Jagannath S and Vesole D; Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol. 102:1115–1123. 1998. View Article : Google Scholar | |
Alexanian R, Delasalle K, Wang M, Thomas S and Weber D: Curability of multiple myeloma. Bone Marrow Res. 2012:9164792012. View Article : Google Scholar : PubMed/NCBI | |
Boccadoro M, Gavarotti P, Fossati G, Pileri A, Marmont F, Neretto G, Gallamini A, Volta C, Tribalto M, Testa MG, et al: Low plasma cell 3(H) thymidine incorporation in monoclonal gammopathy of undetermined significance (MGUS), smouldering myeloma and remission phase myeloma: A reliable indicator of patients not requiring therapy. Br J Haematol. 58:689–696. 1984. View Article : Google Scholar : PubMed/NCBI | |
Brown RD, Joshua DE, Nelson M, Gibson J, Dunn J and MacLennan IC: Serum thymidine kinase as a prognostic indicator for patients with multiple myeloma: results from the MRC (UK) V Trial. Br J Haematol. 84:238–241. 1993. View Article : Google Scholar : PubMed/NCBI | |
Lust JA, Lacy MQ, Zeldenrust SR, Dispenzieri A, Gertz MA, Witzig TE, Kumar S, Hayman SR, Russell SJ, Buadi FK, et al: Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin Proc. 84:114–122. 2009. View Article : Google Scholar : PubMed/NCBI | |
Joshua DE, Gibson J and Brown RD: Mechanisms of the escape phase of myeloma. Blood Rev. 8:13–20. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lonial S, Mitsiades CS and Richardson PG: Treatment options for relapsed and refractory multiple myeloma. Clin Cancer Res. 17:1264–1277. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alexanian R, Barlogie B and Dixon D: High-dose glucocorticoid treatment of resistant myeloma. Ann Intern Med. 105:8–11. 1986. View Article : Google Scholar : PubMed/NCBI | |
McPhedran P, Heath CW Jr and Garcia J: Multiple myeloma incidence in metropolitan Atlanta, Georgia: Racial and seasonal variations. Blood. 39:866–873. 1972.PubMed/NCBI | |
Clark DW and MacMahon B: The incidence of multiple myeloma. J Chronic Dis. 4:508–515. 1956. View Article : Google Scholar : PubMed/NCBI | |
Greenberg AJ, Vachon CM and Rajkumar SV: Disparities in the prevalence, pathogenesis and progression of monoclonal gammopathy of undetermined significance and multiple myeloma between blacks and whites. Leukemia. 26:609–614. 2012. View Article : Google Scholar | |
Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C, et al: Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 68:190–197. 2008. View Article : Google Scholar : PubMed/NCBI | |
Du J, Liu S, He J, Liu X, Qu Y, Yan W, Fan J, Li R, Xi H, Fu W, et al: MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget. 6:14993–15007. 2015. View Article : Google Scholar : PubMed/NCBI | |
Agarwal JR and Matsui W: Multiple myeloma: A paradigm for translation of the cancer stem cell hypothesis. Anticancer Agents Med Chem. 10:116–120. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pilarski LM, Mant MJ and Belch AR: Drug resistance in multiple myeloma: Novel therapeutic targets within the malignant clone. Leuk Lymphoma. 32:199–210. 1999. View Article : Google Scholar : PubMed/NCBI | |
Koskela K, Pelliniemi TT and Remes K: VAD regimen in the treatment of resistant multiple myeloma: Slow or fast infusion? Leuk Lymphoma. 10:347–351. 1993. View Article : Google Scholar : PubMed/NCBI | |
Harris AL and Hochhauser D: Mechanisms of multidrug resistance in cancer treatment. Acta Oncol. 31:205–213. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sonneveld P, Lokhorst HM and Vossebeld P: Drug resistance in multiple myeloma. Semin Hematol. 34(Suppl 5): 34–39. 1997.PubMed/NCBI | |
Tucci M, Quatraro C, Dammacco F and Silvestris F: Role of active drug transporters in refractory multiple myeloma. Curr Top Med Chem. 9:218–224. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang JC: DNA topoisomerases. Annu Rev Biochem. 65:635–692. 1996. View Article : Google Scholar : PubMed/NCBI | |
Liu LF: DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 58:351–375. 1989. View Article : Google Scholar : PubMed/NCBI | |
Oloumi A, MacPhail SH, Johnston PJ, Banáth JP and Olive PL: Changes in subcellular distribution of topoisomerase IIalpha correlate with etoposide resistance in multicell spheroids and xenograft tumors. Cancer Res. 60:5747–5753. 2000.PubMed/NCBI | |
Turner JG, Marchion DC, Dawson JL, Emmons MF, Hazlehurst LA, Washausen P and Sullivan DM: Human multiple myeloma cells are sensitized to topoisomerase II inhibitors by CRM1 inhibition. Cancer Res. 69:6899–6905. 2009. View Article : Google Scholar : PubMed/NCBI | |
Campling BG, Baer K, Baker HM, Lam YM and Cole SP: Do glutathione and related enzymes play a role in drug resistance in small cell lung cancer cell lines? Br J Cancer. 68:327–335. 1993. View Article : Google Scholar : PubMed/NCBI | |
Garel MC, Domenget C, Caburi-Martin J, Prehu C, Galacteros F and Beuzard Y: Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J Biol Chem. 261:14704–14709. 1986.PubMed/NCBI | |
Petrini M, Di Simone D, Favati A, Mattii L, Valentini P and Grassi B: GST-pi and P-170 co-expression in multiple myeloma. Br J Haematol. 90:393–397. 1995. View Article : Google Scholar : PubMed/NCBI | |
Manier S, Sacco A, Leleu X, Ghobrial IM and Roccaro AM: Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012:1574962012. View Article : Google Scholar : PubMed/NCBI | |
Meads MB, Gatenby RA and Dalton WS: Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat Rev Cancer. 9:665–674. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shain KH and Dalton WS: Cell adhesion is a key determinant in de novo multidrug resistance (MDR): New targets for the prevention of acquired MDR. Mol Cancer Ther. 1:69–78. 2001. | |
Damiano JS, Cress AE, Hazlehurst LA, Shtil AA and Dalton WS: Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 93:1658–1667. 1999.PubMed/NCBI | |
Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R, Hideshima T and Anderson KC: TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: Therapeutic applications. Blood. 98:795–804. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP and Anderson KC: Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: Therapeutic implications. Blood. 99:4525–4530. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE, Shima Y, Tai YT, Rosen S, Avraham S, et al: SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem. 275:27845–27850. 2000.PubMed/NCBI | |
Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J and Anderson KC: The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61:3071–3076. 2001.PubMed/NCBI | |
Dalton WS and Jove R: Drug resistance in multiple myeloma: Approaches to circumvention. Semin Oncol. 26(Suppl 13): 23–27. 1999.PubMed/NCBI | |
Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, Hideshima T, Treon SP, Munshi NC, Richardson PG, et al: Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: Therapeutic implications. Oncogene. 21:5673–5683. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, et al: NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 277:16639–16647. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nefedova Y, Landowski TH and Dalton WS: Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia. 17:1175–1182. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kühne A, Tzvetkov MV, Hagos Y, Lage H, Burckhardt G and Brockmöller J: Influx and efflux transport as determinants of melphalan cytotoxicity: Resistance to melphalan in MDR1 over-expressing tumor cell lines. Biochem Pharmacol. 78:45–53. 2009. View Article : Google Scholar | |
Doyle L and Ross DD: Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 22:7340–7358. 2003. View Article : Google Scholar : PubMed/NCBI | |
Raaijmakers HG, Izquierdo MA, Lokhorst HM, de Leeuw C, Belien JA, Bloem AC, Dekker AW, Scheper RJ and Sonneveld P: Lung-resistance-related protein expression is a negative predictive factor for response to conventional low but not to intensified dose alkylating chemotherapy in multiple myeloma. Blood. 91:1029–1036. 1998.PubMed/NCBI | |
Hofmeister CC, Yang X, Pichiorri F, Chen P, Rozewski DM, Johnson AJ, Lee S, Liu Z, Garr CL, Hade EM, et al: Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: Evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. J Clin Oncol. 29:3427–3434. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tong Z, Yerramilli U, Surapaneni S and Kumar G: The interactions of lenalidomide with human uptake and efflux transporters and UDP-glucuronosyltransferase 1A1: Lack of potential for drug-drug interactions. Cancer Chemother Pharmacol. 73:869–874. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y: Pharmacokinetic and pharmacodynamic studies of lenalidomide and pomalidomide. Electronic Thesis or Dissertation. Retrieved from https://etd.ohiolink.edu/. | |
O'Connor R, Ooi MG, Meiller J, Jakubikova J, Klippel S, Delmore J, Richardson P, Anderson K, Clynes M, Mitsiades CS, et al: The interaction of bortezomib with multidrug transporters: Implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol. 71:1357–1368. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Tanaka K, Matsunobu T, Okada T, Nakatani F, Sakimura R, Hanada M and Iwamoto Y: The mechanism of cross-resistance to proteasome inhibitor bortezomib and overcoming resistance in Ewing's family tumor cells. Int J Oncol. 31:803–811. 2007.PubMed/NCBI | |
Zimmermann C, Gutmann H and Drewe J: Thalidomide does not interact with P-glycoprotein. Cancer Chemother Pharmacol. 57:599–606. 2006. View Article : Google Scholar | |
Dilger K, Alberer M, Busch A, Enninger A, Behrens R, Koletzko S, Stern M, Beckmann C and Gleiter CH: Pharmacokinetics and pharmacodynamic action of budesonide in children with Crohn's disease. Aliment Pharmacol Ther. 23:387–396. 2006. View Article : Google Scholar : PubMed/NCBI | |
Karssen AM, Meijer OC, van der Sandt IC, De Boer AG, De Lange EC and De Kloet ER: The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J Endocrinol. 175:251–260. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shapiro AB and Ling V: Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem. 250:130–137. 1997. View Article : Google Scholar | |
Cole SP and Deeley RG: Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci. 27:438–446. 2006. View Article : Google Scholar : PubMed/NCBI | |
Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T and Bates SE: Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol. 75:1302–1312. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kitazono M, Sumizawa T, Takebayashi Y, Chen ZS, Furukawa T, Nagayama S, Tani A, Takao S, Aikou T and Akiyama S: Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells. J Natl Cancer Inst. 91:1647–1653. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kang W and Weiss M: Digoxin uptake, receptor heterogeneity, and inotropic response in the isolated rat heart: A comprehensive kinetic model. J Pharmacol Exp Ther. 302:577–583. 2002. View Article : Google Scholar : PubMed/NCBI | |
Abbaszadegan MR, Futscher BW, Klimecki WT, List A and Dalton WS: Analysis of multidrug resistance-associated protein (MRP) messenger RNA in normal and malignant hematopoietic cells. Cancer Res. 54:4676–4679. 1994.PubMed/NCBI | |
Duhem C, Ries F and Dicato M: What does multidrug resistance (MDR) expression mean in the clinic? Oncologist. 1:151–158. 1996.PubMed/NCBI | |
Pilarski LM and Belch AR: Intrinsic expression of the multidrug transporter, P-glycoprotein 170, in multiple myeloma: Implications for treatment. Leuk Lymphoma. 17:367–374. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nuessler V, Gieseler F, Gullis E, Pelka-Fleischer R, Stötzer O, Zwierzina H and Wilmanns W: Functional P-gp expression in multiple myeloma patients at primary diagnosis and relapse or progressive disease. Leukemia. 11(Suppl 5): S10–S14. 1997. | |
Drain S, Flannely L, Drake MB, Kettle P, Orr N, Bjourson AJ, Catherwood MA and Alexander HD: Multidrug resistance gene expression and ABCB1 SNPs in plasma cell myeloma. Leuk Res. 35:1457–1463. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li YH, Wang YH, Li Y and Yang L: MDR1 gene polymorphisms and clinical relevance. Yi Chuan Xue Bao. 33:93–104. 2006.PubMed/NCBI | |
Drain S, Catherwood MA, Orr N, Galligan L, Rea IM, Hodkinson C, Drake MB, Kettle PJ, Morris TC and Alexander HD: ABCB1 (MDR1) rs1045642 is associated with increased overall survival in plasma cell myeloma. Leuk Lymphoma. 50:566–570. 2009. View Article : Google Scholar : PubMed/NCBI | |
Buda G, Maggini V, Galimberti S, Martino A, Giuliani N, Morabito F, Genestreti G, Iacopino P, Rizzoli V, Barale R, et al: MDR1 polymorphism influences the outcome of multiple myeloma patients. Br J Haematol. 137:454–456. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barrand MA, Bagrij T and Neo SY: Multidrug resistance-associated protein: A protein distinct from P-glycoprotein involved in cytotoxic drug expulsion. Gen Pharmacol. 28:639–645. 1997. View Article : Google Scholar : PubMed/NCBI | |
Davey RA, Longhurst TJ, Davey MW, Belov L, Harvie RM, Hancox D and Wheeler H: Drug resistance mechanisms and MRP expression in response to epirubicin treatment in a human leukaemia cell line. Leuk Res. 19:275–282. 1995. View Article : Google Scholar : PubMed/NCBI | |
Versantvoort CH, Broxterman HJ, Bagrij T, Scheper RJ and Twentyman PR: Regulation by glutathione of drug transport in multidrug-resistant human lung tumour cell lines overexpressing multidrug resistance-associated protein. Br J Cancer. 72:82–89. 1995. View Article : Google Scholar : PubMed/NCBI | |
Buda G, Ricci D, Huang CC, Favis R, Cohen N, Zhuang SH, Harousseau JL, Sonneveld P, Bladé J and Orlowski RZ: Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol. 89:1133–1140. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grant CE, Valdimarsson G, Hipfner DR, Almquist KC, Cole SP and Deeley RG: Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res. 54:357–361. 1994.PubMed/NCBI | |
Lehne G: P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets. 1:85–99. 2000. View Article : Google Scholar | |
Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT, Wegman TD, Vaalburg W and van der Graaf WT: The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur J Cancer. 40:2064–2070. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cooray HC, Blackmore CG, Maskell L and Barrand MA: Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport. 13:2059–2063. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Liu Y, Yang Y, Bates S and Zhang JT: Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. J Biol Chem. 279:19781–19789. 2004. View Article : Google Scholar : PubMed/NCBI | |
Raaijmakers MH, de Grouw EP, Heuver LH, van der Reijden BA, Jansen JH, Scheffer G, Scheper RJ, de Witte TJ and Raymakers RA: Impaired breast cancer resistance protein mediated drug transport in plasma cells in multiple myeloma. Leuk Res. 29:1455–1458. 2005. View Article : Google Scholar : PubMed/NCBI | |
Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK and Ross DD: A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 95:15665–15670. 1998. View Article : Google Scholar : PubMed/NCBI | |
Jakubikova J, Adamia S, Kost-Alimova M, Klippel S, Cervi D, Daley JF, Cholujova D, Kong SY, Leiba M, Blotta S, et al: Lenalidomide targets clonogenic side population in multiple myeloma: Pathophysiologic and clinical implications. Blood. 117:4409–4419. 2011. View Article : Google Scholar : PubMed/NCBI | |
Turner JG, Gump JL, Zhang C, Cook JM, Marchion D, Hazlehurst L, Munster P, Schell MJ, Dalton WS and Sullivan DM: ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood. 108:3881–3889. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tamura A, Wakabayashi K, Onishi Y, Takeda M, Ikegami Y, Sawada S, Tsuji M, Matsuda Y and Ishikawa T: Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci. 98:231–239. 2007. View Article : Google Scholar : PubMed/NCBI | |
Izquierdo MA, Scheffer GL, Flens MJ, Shoemaker RH, Rome LH and Scheper RJ: Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs. Cytotechnology. 19:191–197. 1996. View Article : Google Scholar : PubMed/NCBI | |
Feller N, Kuiper CM, Lankelma J, Ruhdal JK, Scheper RJ, Pinedo HM and Broxterman HJ: Functional detection of MDR1/P170 and MRP/P190-mediated multidrug resistance in tumour cells by flow cytometry. Br J Cancer. 72:543–549. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM and Sirotkin K: dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 29:308–311. 2001. View Article : Google Scholar : | |
Henríquez-Hernández LA, Moreno M, Rey A, Lloret M and Lara PC: MVP expression in the prediction of clinical outcome of locally advanced oral squamous cell carcinoma patients treated with radiotherapy. Radiat Oncol. 7:1–6. 2012. View Article : Google Scholar | |
Litviakov NV, Cherdyntseva NV, Tsyganov MM, Denisov EV, Garbukov EY, Merzliakova MK, Volkomorov VV, Vtorushin SV, Zavyalova MV, Slonimskaya EM, et al: Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol. 71:153–163. 2013. View Article : Google Scholar | |
van den Heuvel-Eibrink MM, Sonneveld P and Pieters R: The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia. Int J Clin Pharmacol Ther. 38:94–110. 2000. View Article : Google Scholar : PubMed/NCBI | |
Herlevsen M, Oxford G, Owens CR, Conaway M and Theodorescu D: Depletion of major vault protein increases doxorubicin sensitivity and nuclear accumulation and disrupts its sequestration in lysosomes. Mol Cancer Ther. 6:1804–1813. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L and Chen G: Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol. 40(Suppl 1): S13–S19. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sikic BI: Pharmacologic approaches to reversing multidrug resistance. Semin Hematol. 34(Suppl 5): 40–47. 1997.PubMed/NCBI | |
Yang HH, Ma MH, Vescio RA and Berenson JR: Overcoming drug resistance in multiple myeloma: The emergence of therapeutic approaches to induce apoptosis. J Clin Oncol. 21:4239–4247. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fisher GA, Lum BL, Hausdorff J and Sikic BI: Pharmacological considerations in the modulation of multidrug resistance. Eur J Cancer. 32A:1082–1088. 1996. View Article : Google Scholar : PubMed/NCBI | |
Dalton W and Lehnert M: Dexverapamil: A clinical approach to circumvention of multidrug resistance. J Cancer Res Clin Oncol. 121:R1. 1995. View Article : Google Scholar | |
Berenson JR, Crowley JJ, Grogan TM, Zangmeister J, Briggs AD, Mills GM, Barlogie B and Salmon SE: Maintenance therapy with alternate-day prednisone improves survival in multiple myeloma patients. Blood. 99:3163–3168. 2002. View Article : Google Scholar : PubMed/NCBI | |
Urashima M, Chen BP, Chen S, Pinkus GS, Bronson RT, Dedera DA, Hoshi Y, Teoh G, Ogata A, Treon SP, et al: The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood. 90:754–765. 1997.PubMed/NCBI | |
Brown R, Suen H, Favaloro J, Yang S, Ho PJ, Gibson J and Joshua D: Trogocytosis generates acquired regulatory T cells adding further complexity to the dysfunctional immune response in multiple myeloma. OncoImmunology. 1:1658–1660. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ: Serum tumor markers in breast cancer: Are they of clinical value? Clin Chem. 52:345–351. 2006. View Article : Google Scholar : PubMed/NCBI | |
Allin KH, Nordestgaard BG, Flyger H and Bojesen SE: Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: A cohort study. Breast Cancer Res. 13:R552011. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Abraham J, Flynn DC, Castranova V, Shi X and Qian Y: Individualized survival and treatment response predictions for breast cancers using phospho-EGFR, phospho-ER, phospho-HER2/neu, phospho-IGF-IR/In, phospho-MAPK, and phospho-p70S6K proteins. Int J Biol Markers. 22:1–11. 2007.PubMed/NCBI | |
Sargent DJ, Conley BA, Allegra C and Collette L: Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 23:2020–2027. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kumar G, Lau H and Laskin O: Lenalidomide: In vitro evaluation of the metabolism and assessment of cytochrome P450 inhibition and induction. Cancer Chemother Pharmacol. 63:1171–1175. 2009. View Article : Google Scholar | |
Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF and Christians U: Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 285:1104–1112. 1998.PubMed/NCBI | |
Sattler M, Guengerich FP, Yun CH, Christians U and Sewing KF: Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos. 20:753–761. 1992.PubMed/NCBI | |
Joshua DE, Brown RD and Gibson J: Multiple myeloma: Why does the disease escape from plateau phase? Br J Haematol. 88:667–671. 1994. View Article : Google Scholar : PubMed/NCBI | |
Fung KL and Gottesman MM: A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochim Biophys Acta. 1794:860–871. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, et al: Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 97:3473–3478. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dumontet C, Landi S, Reiman T, Perry T, Plesa A, Bellini I, Barale R, Pilarski LM, Troncy J, Tavtigian S, et al: Genetic polymorphisms associated with outcome in multiple myeloma patients receiving high-dose melphalan. Bone Marrow Transplant. 45:1316–1324. 2010. View Article : Google Scholar | |
Maggini V, Buda G, Martino A, Presciuttini S, Galimberti S, Orciuolo E, Barale R, Petrini M and Rossi AM: MDR1 diplotypes as prognostic markers in multiple myeloma. Pharmacogenet Genomics. 18:383–389. 2008. View Article : Google Scholar : PubMed/NCBI | |
Natarajan K, Xie Y, Baer MR and Ross DD: Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 83:1084–1103. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R, Palumbo A, Jagannath S, Blade J, Lonial S, et al; International Myeloma Working Group. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 23:215–224. 2009. View Article : Google Scholar |