1
|
Micalizzi DS, Farabaugh SM and Ford HL:
Epithelial-mesenchymal transition in cancer: Parallels between
normal development and tumor progression. J Mammary Gland Biol
Neoplasia. 15:117–134. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brabletz T, Hlubek F, Spaderna S,
Schmalhofer O, Hiendlmeyer E, Jung A and Kirchner T: Invasion and
metastasis in colorectal cancer: Epithelial-mesenchymal transition,
mesenchymal-epithelial transition, stem cells and β-catenin. Cells
Tissues Organs. 179:56–65. 2005. View Article : Google Scholar
|
3
|
Cano A, Pérez-Moreno MA, Rodrigo I,
Locascio A, Blanco MJ, del Barrio MG, Portillo F and Nieto MA: The
transcription factor snail controls epithelial-mesenchymal
transitions by repressing E-cadherin expression. Nat Cell Biol.
2:76–83. 2000. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Nagaishi M, Paulus W, Brokinkel B, Vital
A, Tanaka Y, Nakazato Y, Giangaspero F and Ohgaki H:
Transcriptional factors for epithelial-mesenchymal transition are
associated with mesenchymal differentiation in gliosarcoma. Brain
Pathol. 22:670–676. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Radisky ES and Radisky DC: Matrix
metalloproteinase-induced epithelial-mesenchymal transition in
breast cancer. J Mammary Gland Biol Neoplasia. 15:201–212. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kleine H and Lüscher B: Learning how to
read ADP-ribosylation. Cell. 139:17–19. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zolkiewska A: Ecto-ADP-ribose
transferases: Cell-surface response to local tissue injury.
Physiology (Bethesda). 20:374–381. 2005. View Article : Google Scholar
|
8
|
Tuncel H, Tanaka S, Oka S, Nakai S,
Fukutomi R, Okamoto M, Ota T, Kaneko H, Tatsuka M and Shimamoto F:
PARP6, a mono (ADP-ribosyl) transferase and a negative regulator of
cell proliferation, is involved in colorectal cancer development.
Int J Oncol. 41:2079–2086. 2012.PubMed/NCBI
|
9
|
Gangopadhyay NN, Luketich JD, Opest A,
Visus C, Meyer EM, Landreneau R and Schuchert MJ: Inhibition of
poly (ADP-ribose) polymerase (PARP) induces apoptosis in lung
cancer cell lines. Cancer Invest. 29:608–616. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Inbar D, Cohen-Armon M and Neumann D:
Erythropoietin-driven signalling and cell migration mediated by
polyADP-ribosylation. Br J Cancer. 107:1317–1326. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li M, Threadgill MD, Wang Y, Cai L and Lin
X: Poly (ADP-ribose) polymerase inhibition down-regulates
expression of metastasis-related genes in CT26 colon carcinoma
cells. Pathobiology. 76:108–116. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Caldini R, Fanti E, Magnelli L, Barletta
E, Tanganelli E, Zampieri M and Chevanne M: Low doses of
3-aminobenzamide, a poly (ADP-ribose) polymerase inhibitor,
stimulate angiogenesis by regulating expression of urokinase type
plasminogen activator and matrix metalloprotease 2. Vasc Cell.
3:122011. View Article : Google Scholar
|
13
|
Giansanti V, Donà F, Tillhon M and
Scovassi AI: PARP inhibitors: New tools to protect from
inflammation. Biochem Pharmacol. 80:1869–1877. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wielckens K, Bredehorst R, Adamietz P and
Hilz H: Protein-bound polymeric and monomeric ADP-ribose residues
in hepatic tissues. Comparative analyses using a new procedure for
the quantification of poly (ADP-ribose). Eur J Biochem. 117:69–74.
1981. View Article : Google Scholar : PubMed/NCBI
|
15
|
Laing S, Unger M, Koch-Nolte F and Haag F:
ADP-ribosylation of arginine. Amino Acids. 41:257–269. 2011.
View Article : Google Scholar :
|
16
|
Okazaki IJ and Moss J:
Mono-ADP-ribosylation: A reversible posttranslational modification
of proteins. Adv Pharmacol. 35:247–280. 1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jones EM and Baird A: Cell-surface
ADP-ribosylation offibroblast growth factor-2 by an
arginine-specific ADP-ribosyltransferase. Biochem J. 323:173–177.
1997. View Article : Google Scholar
|
18
|
Hottiger MO, Boothby M, Koch-Nolte F,
Lüscher B, Martin NM, Plummer R, Wang ZQ and Ziegler M: Progress in
the function and regulation of ADP-Ribosylation. Sci Signal.
4:mr52011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Paone G, Wada A, Stevens LA, Matin A,
Hirayama T, Levine RL and Moss J: ADP ribosylation of human
neutrophil peptide-1 regulates its biological properties. Proc Natl
Acad Sci USA. 99:8231–8235. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Saxty BA, Yadollahi-Farsani M, Upton PD,
Johnstone SR and MacDermot J: Inactivation of platelet-derived
growth factor-BB following modification by ADP-ribosyltransferase.
Br J Pharmacol. 133:1219–1226. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zolkiewska A and Moss J: Integrin alpha 7
as substrate for a glycosylphosphatidylinositol-anchored
ADP-ribosyltransferase on the surface of skeletal muscle cells. J
Biol Chem. 268:25273–25276. 1993.PubMed/NCBI
|
22
|
Kuang J, Wang Y-L, Xiao M, Tang Y, Chen
WW, Song GL, Yang X and Li M: Synergistic effect of
arginine-specific ADP-ribosyltransferase 1 and poly (ADP-ribose)
polymerase-1 on apoptosis induced by cisplatin in CT26 cells. Oncol
Rep. 31:2335–2343. 2014.
|
23
|
Xu J-X, Wang Y-l, Tang Y and Xiong W:
Effect of ART1 gene silencing by RNA interference on the
proliferation of mouse colon carcinoma cells and its possible
mechanism. Tumor. 32:949–954. 2012.
|
24
|
Xiao M, Tang Y, Wang Y-L, Yang L, Li X,
Kuang J and Song GL: ART1 silencing enhances apoptosis of mouse
CT26 cells via the PI3K/Akt/NF-κB pathway. Cell Physiol Biochem.
32:1587–1599. 2013.
|
25
|
Tang Y, Wang Y-L, Yang L, Xu JX, Xiong W,
Xiao M and Li M: Inhibition of arginine ADP-ribosyltransferase 1
reduces the expression of poly (ADP-ribose) polymerase-1 in colon
carcinoma. Int J Mol Med. 32:130–136. 2013.PubMed/NCBI
|
26
|
Shen L, Zhang X, Hu D, Feng T, Li H, Lu Y
and Huang J: Hepatitis B virus X (HBx) play an anti-apoptosis role
in hepatic progenitor cells by activating Wnt/β-catenin pathway.
Mol Cell Biochem. 383:213–222. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jinka R, Kapoor R, Sistla PG, Raj TA and
Pande G: Alterations in cell-extracellular matrix interactions
during progression of cancers. Int J Cell Biol. 2012:2191962012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Vizirianakis IS, Yao C-C, Chen Y, Ziober
BL, Tsiftsoglou AS and Kramer RH: Transfection of MCF-7 carcinoma
cells with human integrin α7 cDNA promotes adhesion to laminin.
Arch Biochem Biophys. 385:108–116. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kramer RH, Vu MP, Cheng Y-F, Ramos DM,
Timpl R and Waleh N: Laminin-binding integrin alpha 7 beta 1:
Functional characterization and expression in normal and malignant
melanocytes. Cell Regul. 2:805–817. 1991.PubMed/NCBI
|
30
|
Yao C-C, Ziober BL, Squillace RM and
Kramer RH: α7 integrin mediates cell adhesion and migration on
specific laminin isoforms. J Biol Chem. 271:25598–25603. 1996.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhao Z, Gruszczynska-Biegala J and
Zolkiewska A: ADP-ribo-sylation of integrin alpha7 modulates the
binding of integrin alpha7beta1 to laminin. Biochem J. 385:309–317.
2005. View Article : Google Scholar
|
32
|
Batlle E, Sancho E, Francí C, Domínguez D,
Monfar M, Baulida J and García De Herreros A: The transcription
factor snail is a repressor of E-cadherin gene expression in
epithelial tumour cells. Nat Cell Biol. 2:84–89. 2000. View Article : Google Scholar
|
33
|
Sahai E and Marshall CJ: RHO-GTPases and
cancer. Nat Rev Cancer. 2:133–142. 2002. View Article : Google Scholar
|
34
|
Rathinam R, Berrier A and Alahari SK: Role
of Rho GTPases and their regulators in cancer progression. Front
Biosci (Landmark Ed). 16:2561–2571. 2011. View Article : Google Scholar
|
35
|
Yamazaki D, Kurisu S and Takenawa T:
Regulation of cancer cell motility through actin reorganization.
Cancer Sci. 96:379–386. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Watanabe N, Madaule P, Reid T, Ishizaki T,
Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM and Narumiya
S: p140mDia, a mammalian homolog of Drosophila diaphanous, is a
target protein for Rho small GTPase and is a ligand for profilin.
EMBO J. 16:3044–3056. 1997. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gomez dPT and Lacal JC: RHOA (ras homolog
gene family, member A). Atlas Genet Cytogenet Oncol Haematol.
11:124–127. 2007.
|
38
|
Vega FM and Ridley AJ: Rho GTPases in
cancer cell biology. FEBS Lett. 582:2093–2101. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yau L, Litchie B, Thomas S, Storie B,
Yurkova N and Zahradka P: Endogenous mono-ADP-ribosylation mediates
smooth muscle cell proliferation and migration via protein kinase
N-dependent induction of c-fos expression. Eur J Biochem.
270:101–110. 2003. View Article : Google Scholar
|
40
|
Osaki M, Oshimura M and Ito H: PI3K-Akt
pathway: Its functions and alterations in human cancer. Apoptosis.
9:667–676. 2004. View Article : Google Scholar
|
41
|
Cho HJ, Baek KE, Saika S, Jeong M-J and
Yoo J: Snail is required for transforming growth factor-β-induced
epithelial-mesenchymal transition by activating PI3 kinase/Akt
signal pathway. Biochem Biophys Res Commun. 353:337–343. 2007.
View Article : Google Scholar
|
42
|
Qiao M, Sheng S and Pardee AB: Metastasis
and AKT activation. Cell Cycle. 7:2991–2996. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rubinfeld B, Albert I, Porfiri E, Fiol C,
Munemitsu S and Polakis P: Binding of GSK3β to the APC-β-catenin
complex and regulation of complex assembly. Science. 272:1023–1026.
1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yamamoto H, Kishida S, Kishida M, Ikeda S,
Takada S and Kikuchi A: Phosphorylation of axin, a Wnt signal
negative regulator, by glycogen synthase kinase-3β regulates its
stability. J Biol Chem. 274:10681–10684. 1999. View Article : Google Scholar : PubMed/NCBI
|
45
|
Del Re DP, Miyamoto S and Brown JH: Focal
adhesion kinase as a RhoA-activable signaling scaffold mediating
Akt activation and cardiomyocyte protection. J Biol Chem.
283:35622–35629. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Reuveny M, Heller H and Bengal E: RhoA
controls myoblast survival by inducing the phosphatidylinositol
3-kinase-Akt signaling pathway. FEBS Lett. 569:129–134. 2004.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Basile JR, Gavard J and Gutkind JS:
Plexin-B1 utilizes RhoA and Rho kinase to promote the
integrin-dependent activation of Akt and ERK and endothelial cell
motility. J Biol Chem. 282:34888–34895. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Jacinto E, Loewith R, Schmidt A, Lin S,
Rüegg MA, Hall A and Hall MN: Mammalian TOR complex 2 controls the
actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol.
6:1122–1128. 2004. View Article : Google Scholar : PubMed/NCBI
|