1
|
Lytton B: Prostate cancer: A brief history
and the discovery of hormonal ablation treatment. J Urol.
165:1859–1862. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Arora VK, Schenkein E, Murali R, Subudhi
SK, Wongvipat J, Balbas MD, Shah N, Cai L, Efstathiou E, Logothetis
C, et al: Glucocorticoid receptor confers resistance to
antiandrogens by bypassing androgen receptor blockade. Cell.
155:1309–1322. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xie N, Cheng H, Lin D, Liu L, Yang O, Jia
L, Fazli L, Gleave ME, Wang Y, Rennie P, et al: The expression of
glucocorticoid receptor is negatively regulated by active androgen
receptor signaling in prostate tumors. Int J Cancer. 136:E27–E38.
2015. View Article : Google Scholar
|
4
|
Michaelson MD, Oudard S, Ou YC, Sengeløv
L, Saad F, Houede N, Ostler P, Stenzl A, Daugaard G, Jones R, et
al: Randomized, placebo-controlled, phase III trial of sunitinib
plus prednisone versus prednisone alone in progressive, metastatic,
castration-resistant prostate cancer. J Clin Oncol. 32:76–82. 2014.
View Article : Google Scholar
|
5
|
Kelly WK, Halabi S, Carducci M, George D,
Mahoney JF, Stadler WM, Morris M, Kantoff P, Monk JP, Kaplan E, et
al: Randomized, double-blind, placebo-controlled phase III trial
comparing docetaxel and prednisone with or without bevacizumab in
men with metastatic castration-resistant prostate cancer: CALGB
90401. J Clin Oncol. 30:1534–1540. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Guacci V, Koshland D and Strunnikov A: A
direct link between sister chromatid cohesion and chromosome
condensation revealed through the analysis of MCD1 in S.
cerevisiae. Cell. 91:47–57. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Losada A, Hirano M and Hirano T:
Identification of Xenopus SMC protein complexes required for sister
chromatid cohesion. Genes Dev. 12:1986–1997. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Michaelis C, Ciosk R and Nasmyth K:
Cohesins: Chromosomal proteins that prevent premature separation of
sister chromatids. Cell. 91:35–45. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kimura K, Cuvier O and Hirano T:
Chromosome condensation by a human condensin complex in Xenopus egg
extracts. J Biol Chem. 276:5417–5420. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Harvey SH, Krien MJ and O'Connell MJ:
Structural maintenance of chromosomes (smc) proteins, a family of
conserved atpases. Genome Biol. 3:Reviews3003. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Krantz ID, McCallum J, DeScipio C, Kaur M,
Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA,
et al: Cornelia de Lange syndrome is caused by mutations in NIPBL,
the human homolog of Drosophila melanogaster Nipped-B. Nat Genet.
36:631–635. 2004. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ
and Strachan T: NIPBL, encoding a homolog of fungal Scc2-type
sister chromatid cohesion proteins and fly Nipped-B, is mutated in
Cornelia de Lange syndrome. Nat Genet. 36:636–641. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Borck G, Zarhrate M, Bonnefont JP, Munnich
A, Cormier-Daire V and Colleaux L: Incidence and clinical features
of X-linked Cornelia de Lange syndrome due to SMC1L1 mutations. Hum
Mutat. 28:205–206. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Deardorff MA, Kaur M, Yaeger D, Rampuria
A, Korolev S, Pie J, Gil-Rodríguez C, Arnedo M, Loeys B, Kline AD,
et al: Mutations in cohesin complex members SMC3 and SMC1A cause a
mild variant of cornelia de Lange syndrome with predominant mental
retardation. Am J Hum Genet. 80:485–494. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Musio A, Selicorni A, Focarelli ML,
Gervasini C, Milani D, Russo S, Vezzoni P and Larizza L: X-linked
Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet.
38:528–530. 2006. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Ma Z, Lin M, Li K, Fu Y, Liu X, Yang D,
Zhao Y, Zheng J and Sun B: Knocking down SMC1A inhibits growth and
leads to G2/M arrest in human glioma cells. Int J Clin Exp Pathol.
6:862–869. 2013.PubMed/NCBI
|
17
|
Yang Y, Zhang Z, Wang R, Ma W, Wei J and
Li G: siRNA-mediated knockdown of SMC1A expression suppresses the
proliferation of glioblastoma cells. Mol Cell Biochem. 381:209–215.
2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang J, Yu S, Cui L, Wang W, Li J, Wang K
and Lao X: Role of SMC1A overexpression as a predictor of poor
prognosis in late stage colorectal cancer. BMC Cancer. 15:902015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Welsh JB, Sapinoso LM, Su AI, Kern SG,
Wang-Rodriguez J, Moskaluk CA, Frierson HF Jr and Hampton GM:
Analysis of gene expression identifies candidate markers and
pharmacological targets in prostate cancer. Cancer Res.
61:5974–5978. 2001.PubMed/NCBI
|
20
|
Singh D, Febbo PG, Ross K, Jackson DG,
Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, et
al: Gene expression correlates of clinical prostate cancer
behavior. Cancer Cell. 1:203–209. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Glinsky GV, Glinskii AB, Stephenson AJ,
Hoffman RM and Gerald WL: Gene expression profiling predicts
clinical outcome of prostate cancer. J Clin Invest. 113:913–923.
2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Holzbeierlein J, Lal P, LaTulippe E, Smith
A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, et
al: Gene expression analysis of human prostate carcinoma during
hormonal therapy identifies androgen-responsive genes and
mechanisms of therapy resistance. Am J Pathol. 164:217–227. 2004.
View Article : Google Scholar
|
23
|
LaTulippe E, Satagopan J, Smith A, Scher
H, Scardino P, Reuter V and Gerald WL: Comprehensive gene
expression analysis of prostate cancer reveals distinct
transcriptional programs associated with metastatic disease. Cancer
Res. 62:4499–4506. 2002.PubMed/NCBI
|
24
|
Chandran UR, Ma C, Dhir R, Bisceglia M,
Lyons-Weiler M, Liang W, Michalopoulos G, Becich M and Monzon FA:
Gene expression profiles of prostate cancer reveal involvement of
multiple molecular pathways in the metastatic process. BMC Cancer.
7:642007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu H, Yan M, Patra J, Natrajan R, Yan Y,
Swagemakers S, Tomaszewski JM, Verschoor S, Millar EK, van der Spek
P, et al: Enhanced RAD21 cohesin expression confers poor prognosis
and resistance to chemotherapy in high grade luminal, basal and
HER2 breast cancers. Breast Cancer Res. 13:R92011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ghiselli G and Iozzo RV: Overexpression of
bamacan/SMC3 causes transformation. J Biol Chem. 275:20235–20238.
2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hagemann C, Weigelin B, Schommer S,
Schulze M, Al-Jomah N, Anacker J, Gerngras S, Kühnel S, Kessler AF,
Polat B, et al: The cohesin-interacting protein, precocious
dissociation of sisters 5A/sister chromatid cohesion protein 112,
is up-regulated in human astrocytic tumors. Int J Mol Med.
27:39–51. 2011.
|
28
|
Oikawa K, Ohbayashi T, Kiyono T, Nishi H,
Isaka K, Umezawa A, Kuroda M and Mukai K: Expression of a novel
human gene, human wings apart-like (hWAPL), is associated with
cervical carcinogenesis and tumor progression. Cancer Res.
64:3545–3549. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang N, Ge G, Meyer R, Sethi S, Basu D,
Pradhan S, Zhao YJ, Li XN, Cai WW, El-Naggar AK, et al:
Overexpression of Separase induces aneuploidy and mammary
tumorigenesis. Proc Natl Acad Sci USA. 105:13033–13038. 2008.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Barber TD, McManus K, Yuen KW, Reis M,
Parmigiani G, Shen D, Barrett I, Nouhi Y, Spencer F, Markowitz S,
et al: Chromatid cohesion defects may underlie chromosome
instability in human colorectal cancers. Proc Natl Acad Sci USA.
105:3443–3448. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sheltzer JM, Blank HM, Pfau SJ, Tange Y,
George BM, Humpton TJ, Brito IL, Hiraoka Y, Niwa O and Amon A:
Aneuploidy drives genomic instability in yeast. Science.
333:1026–1030. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Solomon DA, Kim T, Diaz-Martinez LA, Fair
J, Elkahloun AG, Harris BT, Toretsky JA, Rosenberg SA, Shukla N,
Ladanyi M, et al: Mutational inactivation of STAG2 causes
aneuploidy in human cancer. Science. 333:1039–1043. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang YF, Jiang R, Li JD, Zhang XY, Zhao
P, He M, Zhang HZ, Sun LP, Shi DL, Zhang GX, et al: SMC1A knockdown
induces growth suppression of human lung adenocarcinoma cells
through G1/S cell cycle phase arrest and apoptosis pathways in
vitro. Oncol Lett. 5:749–755. 2013.PubMed/NCBI
|
34
|
Hömme C, Krug U, Tidow N, Schulte B,
Kühler G, Serve H, Bürger H, Berdel WE, Dugas M, Heinecke A, et al:
Low SMC1A protein expression predicts poor survival in acute
myeloid leukemia. Oncol Rep. 24:47–56. 2010.PubMed/NCBI
|
35
|
Mannini L, Liu J, Krantz ID and Musio A:
Spectrum and consequences of SMC1A mutations: The unexpected
involvement of a core component of cohesin in human disease. Hum
Mutat. 31:5–10. 2010. View Article : Google Scholar
|
36
|
Kaighn ME, Narayan KS, Ohnuki Y, Lechner
JF and Jones LW: Establishment and characterization of a human
prostatic carcinoma cell line (PC-3). Invest Urol. 17:16–23.
1979.PubMed/NCBI
|
37
|
Stone KR, Mickey DD, Wunderli H, Mickey GH
and Paulson DF: Isolation of a human prostate carcinoma cell line
(DU 145). Int J Cancer. 21:274–281. 1978. View Article : Google Scholar : PubMed/NCBI
|