1
|
Miyaki M and Kuroki T: Role of Smad4
(DPC4) inactivation in human cancer. Biochem Biophys Res Commun.
306:799–804. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yamada S, Fujii T, Kanda M, Sugimoto H,
Nomoto S and Kodera Y: Clinical significance of SMAD4 expression in
resectable pancreatic cancer: Correlation with tumor progression
and recurrence pattern. Cancer Res. 74(19 Suppl): 38312014.
View Article : Google Scholar
|
3
|
Sasaki S, Yamamoto H, Kaneto H, Ozeki I,
Adachi Y, Takagi H, Matsumoto T, Itoh H, Nagakawa T, Miyakawa H, et
al: Differential roles of alterations of p53, p16, and SMAD4
expression in the progression of intraductal papillary-mucinous
tumors of the pancreas. Oncol Rep. 10:21–25. 2003.
|
4
|
Mikami T, Ookawa K, Shimoyama T, Fukuda S,
Saito H and Munakata A: KAI1, CAR, and Smad4 expression in the
progression of colorectal tumor. J Gastroenterol. 36:465–469. 2001.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Horvath LG, Henshall SM, Kench JG, Turner
JJ, Golovsky D, Brenner PC, O'Neill GF, Kooner R, Stricker PD,
Grygiel JJ, et al: Loss of BMP2, Smad8, and Smad4 expression in
prostate cancer progression. Prostate. 59:234–242. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
He SM, Zhao ZW, Wang Y, Zhao JP, Wang L,
Hou F and Gao GD: Reduced expression of SMAD4 in gliomas correlates
with progression and survival of patients. J Exp Clin Cancer Res.
30:702011. View Article : Google Scholar : PubMed/NCBI
|
7
|
van Hattem A, Brosens L, de Leng W,
Morsink F, ten Kate FJ, Iacobuzio-Donahue CA, Giardiello FM and
Offerhaus J: SMAD4 Protein expression in polyps of juvenile
polyposis syndrome mirrors genetic status but does not reflect
neoplastic progression. Gastroenterology. 136:A452–A453. 2009.
View Article : Google Scholar
|
8
|
Yan P, Klingbiel D, Saridaki Z, Ceppa P,
Curto M, McKee TA, Roth A, Tejpar S, Delorenzi M, Bosman FT, et al:
Reduced expression of Smad4 is associated with poor survival in
colon cancer. Clin Cancer Res. 22:3037–3047. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xie M, He C and Wei S: Relationship
between expression of TGF-β1, Smad2, Smad4 and prognosis of
patients with resected non-small cell lung cancer. Zhongguo Fei Ai
Za Zhi. 18:543–548. 2015.In Chinese. PubMed/NCBI
|
10
|
Tang ZY, Yang LY, Zhang YJ, Peng KL and Qi
L: Smad4 and TGF-beta1 expression and clinical significance in
bladder transitional cell carcinoma. Zhong Nan Da Xue Xue Bao Yi
Xue Ban. 31:363–366. 2006.In Chinese. PubMed/NCBI
|
11
|
Qiu W, Schönleben F, Li X and Su GH:
Disruption of transforming growth factor beta-Smad signaling
pathway in head and neck squamous cell carcinoma as evidenced by
mutations of SMAD2 and SMAD4. Cancer Lett. 245:163–170. 2007.
View Article : Google Scholar
|
12
|
Miyaki M, Iijima T, Konishi M, Sakai K,
Ishii A, Yasuno M, Hishima T, Koike M, Shitara N, Iwama T, et al:
Higher frequency of Smad4 gene mutation in human colorectal cancer
with distant metastasis. Oncogene. 18:3098–3103. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Blackford A, Serrano OK, Wolfgang CL,
Parmigiani G, Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ,
Eshleman JR, et al: SMAD4 gene mutations are associated with poor
prognosis in pancreatic cancer. Clin Cancer Res. 15:4674–4679.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Aitchison AA, Veerakumarasivam A, Vias M,
Kumar R, Hamdy FC, Neal DE and Mills IG: Promoter methylation
correlates with reduced Smad4 expression in advanced prostate
cancer. Prostate. 68:661–674. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wan M, Tang Y, Tytler EM, Lu C, Jin B,
Vickers SM, Yang L, Shi X and Cao X: Smad4 protein stability is
regulated by ubiquitin ligase SCF beta-TrCP1. J Biol Chem.
279:14484–14487. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wan M and Cao X, Wu Y, Bai S, Wu L, Shi X,
Wang N and Cao X: Jab1 antagonizes TGF-beta signaling by inducing
Smad4 degradation. EMBO Rep. 3:171–176. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li L, Xin H, Xu X, Huang M, Zhang X, Chen
Y, Zhang S, Fu XY and Chang Z: CHIP mediates degradation of Smad
proteins and potentially regulates Smad-induced transcription. Mol
Cell Biol. 24:856–864. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tang Y, Katuri V, Dillner A, Mishra B,
Deng CX and Mishra L: Disruption of transforming growth factor-beta
signaling in ELF beta-spectrin-deficient mice. Science.
299:574–577. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Inman GJ, Nicolás FJ and Hill CS:
Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of
TGF-beta receptor activity. Mol Cell. 10:283–294. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dong C, Li Z, Alvarez R Jr, Feng XH and
Goldschmidt-Clermont PJ: Microtubule binding to Smads may regulate
TGF beta activity. Mol Cell. 5:27–34. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wagner AD and Moehler M: Development of
targeted therapies in advanced gastric cancer: Promising
exploratory steps in a new era. Curr Opin Oncol. 21:381–385. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Powell SM, Harper JC, Hamilton SR,
Robinson CR and Cummings OW: Inactivation of Smad4 in gastric
carcinomas. Cancer Res. 57:4221–4224. 1997.PubMed/NCBI
|
23
|
Wu DM, Zhu HX, Zhao QH, Zhang ZZ, Wang SZ,
Wang ML, Gong WD, Tan M and Zhang ZD: Genetic variations in the
SMAD4 gene and gastric cancer susceptibility. World J
Gastroenterol. 16:5635–5641. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang LH, Kim SH, Lee JH, Choi YL, Kim YC,
Park TS, Hong YC, Wu CF and Shin YK: Inactivation of SMAD4 tumor
suppressor gene during gastric carcinoma progression. Clin Cancer
Res. 13:102–110. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Calva D, Dahdaleh FS, Woodfield G, Weigel
RJ, Carr JC, Chinnathambi S and Howe JR: Discovery of SMAD4
promoters, transcription factor binding sites and deletions in
juvenile polyposis patients. Nucleic Acids Res. 39:5369–5378. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Eguchi T, Prince T, Wegiel B and
Calderwood SK: Role and regulation of myeloid zinc finger protein 1
in cancer. J Cell Biochem. 116:2146–2154. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tsai SJ, Hwang JM, Hsieh SC, Ying TH and
Hsieh YH: Overexpression of myeloid zinc finger 1 suppresses matrix
metalloproteinase-2 expression and reduces invasiveness of SiHa
human cervical cancer cells. Biochem Biophys Res Commun.
425:462–467. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
George SK, Vishwamitra D, Manshouri R, Shi
P and Amin HM: The ALK inhibitor ASP3026 eradicates
NPM-ALK+ T-cell anaplastic large-cell lymphoma in vitro
and in a systemic xenograft lymphoma model. Oncotarget.
5:5750–5763. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vishwamitra D, Curry CV, Alkan S, Shi P
and Amin HM: Sumoylation sustains the stability of NPM-ALK
oncogenic protein and facilitates its nuclear accumulation in
T-cell anaplastic large-cell lymphoma. Blood. 124:35862014.
|
30
|
Vishwamitra D, Shi P, Wilson D, Manshouri
R, Vega F, Schlette EJ and Amin HM: Expression and effects of
inhibition of type I insulin-like growth factor receptor tyrosine
kinase in mantle cell lymphoma. Haematologica. 96:871–880. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Horinaka M, Yoshida T, Tomosugi M, Yasuda
S, Sowa Y and Sakai T: Myeloid zinc finger 1 mediates sulindac
sulfide-induced upregulation of death receptor 5 of human colon
cancer cells. Sci Rep. 4:60002014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen Y, Zhang Z, Yang K, Du J, Xu Y and
Liu S: Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor
growth through enforcing ferroportin-conducted iron egress.
Oncogene. 34:3839–3847. 2015. View Article : Google Scholar
|
33
|
Inoue M, Takahashi K, Niide O, Shibata M,
Fukuzawa M and Ra C: LDOC1, a novel MZF-1-interacting protein,
induces apoptosis. FEBS Lett. 579:604–608. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mudduluru G, Vajkoczy P and Allgayer H:
Myeloid zinc finger 1 induces migration, invasion, and in vivo
metastasis through Axl gene expression in solid cancer. Mol Cancer
Res. 8:159–169. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rafn B, Nielsen CF, Andersen SH,
Szyniarowski P, Corcelle-Termeau E, Valo E, Fehrenbacher N, Olsen
CJ, Daugaard M, Egebjerg C, et al: ErbB2-driven breast cancer cell
invasion depends on a complex signaling network activating myeloid
zinc finger-1-dependent cathepsin B expression. Mol Cell.
45:764–776. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yan QW, Reed E, Zhong XS, Thornton K, Guo
Y and Yu JJ: MZF1 possesses a repressively regulatory function in
ERCC1 expression. Biochem Pharmacol. 71:761–771. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kundu J, Wahab SM, Kundu JK, Choi YL,
Erkin OC, Lee HS, Park SG and Shin YK: Tob1 induces apoptosis and
inhibits proliferation, migration and invasion of gastric cancer
cells by activating Smad4 and inhibiting β-catenin signaling. Int J
Oncol. 41:839–848. 2012.PubMed/NCBI
|
38
|
Roth S, Laiho P, Salovaara R, Launonen V
and Aaltonen LA: No SMAD4 hypermethylation in colorectal cancer. Br
J Cancer. 83:1015–1019. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Minami R, Kitazawa R, Maeda S and Kitazawa
S: Analysis of 5′-flanking region of human Smad4 (DPC4) gene.
Biochim Biophys Acta. 1443:182–185. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schwarte-Waldhoff I and Schmiegel W: Smad4
transcriptional pathways and angiogenesis. Int J Gastrointest
Cancer. 31:47–59. 2002. View Article : Google Scholar
|
41
|
Xia X, Wu W, Huang C, Cen G, Jiang T, Cao
J, Huang K and Qiu Z: SMAD4 and its role in pancreatic cancer.
Tumour Biol. 36:111–119. 2015. View Article : Google Scholar
|
42
|
Malkoski SP and Wang XJ: Two sides of the
story? Smad4 loss in pancreatic cancer versus head-and-neck cancer.
FEBS Lett. 586:1984–1992. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kim SH, Lee SH, Choi YL, Wang LH, Park CK
and Shin YK: Extensive alteration in the expression profiles of
TGFB pathway signaling components and TP53 is observed along the
gastric dysplasia-carcinoma sequence. Histol Histopathol.
23:1439–1452. 2008.PubMed/NCBI
|
44
|
Vishwamitra D, Curry CV, Alkan S, Song YH,
Gallick GE, Kaseb AO, Shi P and Amin HM: The transcription factors
Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK+
T-cell lymphoma. Mol Cancer. 14:532015. View Article : Google Scholar
|
45
|
Gaboli M, Kotsi PA, Gurrieri C, Cattoretti
G, Ronchetti S, Cordon-Cardo C, Broxmeyer HE, Hromas R and Pandolfi
PP: Mzf1 controls cell proliferation and tumorigenesis. Genes Dev.
15:1625–1630. 2001. View Article : Google Scholar : PubMed/NCBI
|
46
|
Deng Y, Wang J, Wang G, Jin Y, Luo X, Xia
X, Gong J and Hu J: p55PIK transcriptionally activated by MZF1
promotes colorectal cancer cell proliferation. BioMed Res Int.
2013:8681312013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tian X, Du H, Fu X, Li K, Li A and Zhang
Y: Smad4 restoration leads to a suppression of Wnt/beta-catenin
signaling activity and migration capacity in human colon carcinoma
cells. Biochem Biophys Res Commun. 380:478–483. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang B, Zhang B, Chen X, Bae S, Singh K,
Washington MK and Datta PK: Loss of Smad4 in colorectal cancer
induces resistance to 5-fluorouracil through activating Akt
pathway. Br J Cancer. 110:946–957. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Jia L, Lee HS, Wu CF, Kundu J, Park SG,
Kim RN, Wang LH, Erkin ÖC, Choi JS, Chae SW, et al: SMAD4
suppresses AURKA-induced metastatic phenotypes via degradation of
AURKA in a TGFbeta-independent manner. Mol Cancer Res.
12:1779–1795. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lee HS, Kundu J, Kim RN and Shin YK:
Transducer of ERBB2.1 (TOB1) as a tumor suppressor: A mechanistic
perspective. Int J Mol Sci. 16:29815–29828. 2015. View Article : Google Scholar : PubMed/NCBI
|