The one-carbon metabolism pathway highlights therapeutic targets for gastrointestinal cancer (Review)
- Authors:
- Masamitsu Konno
- Ayumu Asai
- Koichi Kawamoto
- Naohiro Nishida
- Taroh Satoh
- Yuichiro Doki
- Masaki Mori
- Hideshi Ishii
-
Affiliations: Department of Frontier Science for Cancer and Chemotherapy, Osaka University, Osaka 565-0871, Japan, Department of Gastroenterological Surgery Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan - Published online on: February 20, 2017 https://doi.org/10.3892/ijo.2017.3885
- Pages: 1057-1063
This article is mentioned in:
Abstract
Ghosh D and Poisson LM: 'Omics' data and levels of evidence for biomarker discovery. Genomics. 93:13–16. 2009. View Article : Google Scholar | |
Zong WX, Rabinowitz JD and White E: Mitochondria and Cancer. Mol Cell. 61:667–676. 2016. View Article : Google Scholar : PubMed/NCBI | |
Locasale JW: Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer. 13:572–583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hanley MP and Rosenberg DW: One-carbon metabolism and colorectal cancer: Potential mechanisms of chemoprevention. Curr Pharmacol Rep. 1:197–205. 2015. View Article : Google Scholar : PubMed/NCBI | |
Padmanabhan N and Watson ED: Lessons from the one-carbon metabolism: Passing it along to the next generation. Reprod Biomed Online. 27:637–643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miyo M, Konno M, Colvin H, Nishida N, Koseki J, Kawamoto K, Tsunekuni K, Nishimura J, Hata T, Takemasa I, et al: The importance of mitochondrial folate enzymes in human colorectal cancer. Oncol Rep. 37:417–425. 2016.PubMed/NCBI | |
Farber S, Cutler EC, Hawkins JW, Harrison JH, Peirce EC II and Lenz GG: The action of pteroylglutamic conjugates on man. Science. 106:619–621. 1947. View Article : Google Scholar : PubMed/NCBI | |
Farber S, Diamond LK, Mercer RD, Sylvester RF Jr and Wolff JA: Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 238:787–793. 1948. View Article : Google Scholar : PubMed/NCBI | |
Chabner BA and Roberts TG Jr: Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer. 5:65–72. 2005. View Article : Google Scholar : PubMed/NCBI | |
Spears CP, Shahinian AH, Moran RG, Heidelberger C and Corbett TH: In vivo kinetics of thymidylate synthetase inhibition of 5-fluorouracil-sensitive and -resistant murine colon adenocarcinomas. Cancer Res. 42:450–456. 1982.PubMed/NCBI | |
Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, et al: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol. 15:2403–2413. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, Hama N, Kawamoto K, Kobayashi S, Nishida N, et al: MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br J Cancer. 111:1572–1580. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pandey S, Garg P, Lee S, Choung HW, Choung YH, Choung PH and Chung JH: Nucleotide biosynthesis arrest by silencing SHMT1 function via vitamin B6-coupled vector and effects on tumor growth inhibition. Biomaterials. 35:9332–9342. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pikman Y, Puissant A, Alexe G, Furman A, Chen LM, Frumm SM, Ross L, Fenouille N, Bassil CF, Lewis CA, et al: Targeting MTHFD2 in acute myeloid leukemia. J Med Chem. 213:1285–1306. 2016. | |
Marani M, Paone A, Fiascarelli A, Macone A, Gargano M, Rinaldo S, Giardina G, Pontecorvi V, Koes D, McDermott L, et al: A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget. 7:4570–4583. 2016. | |
Paiardini A, Fiascarelli A, Rinaldo S, Daidone F, Giardina G, Koes DR, Parroni A, Montini G, Marani M, Paone A, et al: Screening and in vitro testing of antifolate inhibitors of human cytosolic serine hydroxymethyltransferase. ChemMedChem. 10:490–497. 2015. View Article : Google Scholar : PubMed/NCBI | |
Witschel MC, Rottmann M, Schwab A, Leartsakulpanich U, Chitnumsub P, Seet M, Tonazzi S, Schwertz G, Stelzer F, Mietzner T, et al: Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): Cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities. J Med Chem. 58:3117–3130. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gustafsson R, Jemth AS, Gustafsson Sheppard N, Färnegårdh K, Loseva O, Wiita E, Bonagas N, Dahllund L, Llona-Minguez S and Häggblad M: Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res. Nov 29–2016.Epub ahead of print. PubMed/NCBI | |
Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, et al: Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI | |
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, et al: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 8:376–388. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F, Nagano H, Sekimoto M, Doki Y and Mori M: Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci USA. 107:40–45. 2010. View Article : Google Scholar : | |
Dewi D, Ishii H, Haraguchi N, Nishikawa S, Kano Y, Fukusumi T, Ohta K, Miyazaki S, Ozaki M, Sakai D, et al: Reprogramming of gastrointestinal cancer cells. Cancer Sci. 103:393–399. 2012. View Article : Google Scholar | |
Ogawa H, Wu X, Kawamoto K, Nishida N, Konno M, Koseki J, Matsui H, Noguchi K, Gotoh N, Yamamoto T, et al: MicroRNAs induce epigenetic reprogramming and suppress malignant phenotypes of human colon cancer cells. PLoS One. 10:e01271192015. View Article : Google Scholar : PubMed/NCBI | |
Konno M, Koseki J, Kawamoto K, Nishida N, Matsui H, Dewi DL, Ozaki M, Noguchi Y, Mimori K, Gotoh N, et al: Embryonic microRNA-369 controls metabolic splicing factors and urges cellular reprograming. PLoS One. 10:e01327892015. View Article : Google Scholar : PubMed/NCBI | |
Avgustinova A and Benitah SA: The epigenetics of tumour initiation: Cancer stem cells and their chromatin. Curr Opin Genet Dev. 36:8–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rotili D and Mai A: Targeting histone demethylases: A new avenue for the fight against cancer. Genes Cancer. 2:663–679. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T and Herlyn M: A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 141:583–594. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kano Y, Konno M, Ohta K, Haraguchi N, Nishikawa S, Kagawa Y, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, et al: Jumonji/Arid1b (Jarid1b) protein modulates human esophageal cancer cell growth. Mol Clin Oncol. 1:753–757. 2013. | |
Ohta K, Haraguchi N, Kano Y, Kagawa Y, Konno M, Nishikawa S, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, et al: Depletion of JARID1B induces cellular senescence in human colorectal cancer. Int J Oncol. 42:1212–1218. 2013.PubMed/NCBI | |
Casero RAJ Jr and Marton LJ: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 6:373–390. 2007. View Article : Google Scholar : PubMed/NCBI | |
Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC, et al: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 531:381–385. 2016. View Article : Google Scholar : PubMed/NCBI | |
Longley DB, Harkin DP and Johnston PG: 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, Furukawa H, Nakajima T, Ohashi Y, Imamura H, et al ACTS-GC Group: Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med. 357:1810–1820. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kaufman HE and Heidelberger C: Therapeutic antiviral Action of 5-trifluoromethyl-2′-deoxyuridine in Herpes simplex keratitis. Science. 145:585–586. 1964. View Article : Google Scholar : PubMed/NCBI | |
Mayer RJ, Van Cutsem E, Falcone A, Yoshino T, Garcia-Carbonero R, Mizunuma N, Yamazaki K, Shimada Y, Tabernero J, Komatsu Y, et al RECOURSE Study Group: Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 372:1909–1919. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoshino T, Mizunuma N, Yamazaki K, Nishina T, Komatsu Y, Baba H, Tsuji A, Yamaguchi K, Muro K, Sugimoto N, et al: TAS-102 monotherapy for pretreated metastatic colorectal cancer: A double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 13:993–1001. 2012. View Article : Google Scholar : PubMed/NCBI | |
Honma Y, Yamada Y, Terazawa T, Takashima A, Iwasa S, Kato K, Hamaguchi T, Shimada Y, Ohashi M, Morita S, et al: Feasibility of neoadjuvant S-1 and oxaliplatin followed by surgery for resectable advanced gastric adenocarcinoma. Surg Today. 46:1076–1082. 2016. View Article : Google Scholar | |
Uehara K and Nagino M: Neoadjuvant treatment for locally advanced rectal cancer: A systematic review. Surg Today. 46:161–168. 2016. View Article : Google Scholar | |
Park IJ, Kim JY, Yu CS, Lee JS, Lim SB, Lee JL, Yoon YS, Kim CW and Kim JC: Preoperative chemoradiotherapy for clinically diagnosed T3N0 rectal cancer. Surg Today. 46:90–96. 2016. View Article : Google Scholar | |
Su X, Wellen KE and Rabinowitz JD: Metabolic control of methylation and acetylation. Curr Opin Chem Biol. 30:52–60. 2016. View Article : Google Scholar : | |
Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N, et al: Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 111:15526–15531. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hamabe A, Yamamoto H, Konno M, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Nishida N, Kawamoto K, et al: Combined evaluation of hexokinase 2 and phosphorylated pyruvate dehydrogenase-E1α in invasive front lesions of colorectal tumors predicts cancer metabolism and patient prognosis. Cancer Sci. 105:1100–1108. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gerner EW and Meyskens FL Jr: Polyamines and cancer: Old molecules, new understanding. Nat Rev Cancer. 4:781–792. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hayashi K, Tamari K, Ishii H, Konno M, Nishida N, Kawamoto K, Koseki J, Fukusumi T, Kano Y, Nishikawa S, et al: Visualization and characterization of cancer stem-like cells in cervical cancer. Int J Oncol. 45:2468–2474. 2014.PubMed/NCBI | |
Kano Y, Konno M, Kawamoto K, Tamari K, Hayashi K, Fukusumi T, Satoh T, Tanaka S, Ogawa K, Mori M, et al: Novel drug discovery system for cancer stem cells in human squamous cell carcinoma of the esophagus. Oncol Rep. 31:1133–1138. 2014.PubMed/NCBI | |
Tamari K, Hayashi K, Ishii H, Kano Y, Konno M, Kawamoto K, Nishida N, Koseki J, Fukusumi T, Hasegawa S, et al: Identification of chemoradiation-resistant osteosarcoma stem cells using an imaging system for proteasome activity. Int J Oncol. 45:2349–2354. 2014.PubMed/NCBI | |
Koseki J, Matsui H, Konno M, Nishida N, Kawamoto K, Kano Y, Mori M, Doki Y and Ishii H: A Trans-omics mathematical analysis reveals novel functions of the ornithine metabolic pathway in cancer Stem cells. Sci Rep. 6:207262016. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nowell PC: Foundations in cancer research. Chromosomes and cancer: The evolution of an idea. Adv Cancer Res. 62:1–17. 1993. View Article : Google Scholar : PubMed/NCBI | |
Nowell PC and Croce CM: Chromosomes, genes, and cancer. Am J Pathol. 125:7–15. 1986.PubMed/NCBI | |
Weinberg RA: Tumor suppressor genes. Science. 254:1138–1146. 1991. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ: Cancer cell cycles. Science. 274:1672–1677. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, et al: The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 84:587–597. 1996. View Article : Google Scholar : PubMed/NCBI | |
Huang K and Frey PA: Engineering human Fhit, a diadenosine triphosphate hydrolase, into an efficient dinucleoside polyphosphate synthase. J Am Chem Soc. 126:9548–9549. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huebner K and Croce CM: FRA3B and other common fragile sites: The weakest links. Nat Rev Cancer. 1:214–221. 2001. View Article : Google Scholar | |
Dumon KR, Ishii H, Fong LY, Zanesi N, Fidanza V, Mancini R, Vecchione A, Baffa R, Trapasso F, During MJ, et al: FHIT gene therapy prevents tumor development in Fhit-deficient mice. Proc Natl Acad Sci USA. 98:3346–3351. 2001. View Article : Google Scholar : PubMed/NCBI | |
Inoue H, Ishii H, Alder H, Snyder E, Druck T, Huebner K and Croce CM: Sequence of the FRA3B common fragile region: Implications for the mechanism of FHIT deletion. Proc Natl Acad Sci USA. 94:14584–14589. 1997. View Article : Google Scholar | |
Mimori K, Druck T, Inoue H, Alder H, Berk L, Mori M, Huebner K and Croce CM: Cancer-specific chromosome alterations in the constitutive fragile region FRA3B. Proc Natl Acad Sci USA. 96:7456–7461. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ishii H, Mimori K, Inoue H, Inageta T, Ishikawa K, Semba S, Druck T, Trapasso F, Tani K, Vecchione A, et al: Fhit modulates the DNA damage checkpoint response. Cancer Res. 66:11287–11292. 2006. View Article : Google Scholar : PubMed/NCBI | |
Semba S, Trapasso F, Fabbri M, McCorkell KA, Volinia S, Druck T, Iliopoulos D, Pekarsky Y, Ishii H, Garrison PN, et al: Fhit modulation of the Akt-survivin pathway in lung cancer cells: Fhit-tyrosine 114 (Y114) is essential. Oncogene. 25:2860–2872. 2006. View Article : Google Scholar : PubMed/NCBI | |
Arlt MF, Casper AM and Glover TW: Common fragile sites. Cytogenet Genome Res. 100:92–100. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dayem AA, Choi HY, Kim JH and Cho SG: Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel). 2:859–884. 2010. View Article : Google Scholar | |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ambrosone CB: Oxidants and antioxidants in breast cancer. Antioxid Redox Signal. 2:903–917. 2000. View Article : Google Scholar | |
Barreiro E, Peinado VI, Galdiz JB, Ferrer E, Marin-Corral J, Sánchez F, Gea J and Barberà JA; ENIGMA in COPD Project: Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med. 182:477–488. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi CI and Suda T: Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 227:421–430. 2012. View Article : Google Scholar | |
Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol. 552:335–344. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dickinson BC and Chang CJ: Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 7:504–511. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee KW, Lee DJ, Lee JY, Kang DH, Kwon J and Kang SW: Peroxiredoxin II restrains DNA damage-induced death in cancer cells by positively regulating JNK-dependent DNA repair. J Biol Chem. 286:8394–8404. 2011. View Article : Google Scholar : | |
Phillips TM, McBride WH and Pajonk F: The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 98:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI | |
Giannoni E, Buricchi F, Raugei G, Ramponi G and Chiarugi P: Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol. 25:6391–6403. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hoeijmakers JH: DNA damage, aging, and cancer. N Engl J Med. 361:1475–1485. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yee C, Yang W and Hekimi S: The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell. 157:897–909. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fruehauf JP and Meyskens FL Jr: Reactive oxygen species: A breath of life or death? Clin Cancer Res. 13:789–794. 2007. View Article : Google Scholar : PubMed/NCBI | |
Szatrowski TP and Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51:794–798. 1991.PubMed/NCBI | |
Halliwell B: Oxidative stress and cancer: Have we moved forward? Biochem J. 401:1–11. 2007. View Article : Google Scholar | |
Trachootham D, Alexandre J and Huang P: Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chan SM and Majeti R: Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. Int J Hematol. 98:648–657. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ and Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 1:313–323. 2007. View Article : Google Scholar | |
Eyler CE and Rich JN: Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, et al: Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 517:209–213. 2015. View Article : Google Scholar | |
Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P and Brugge JS: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 461:109–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang T, Dong Q, Nice EC, Huang C and Wei Y: Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4:e5372013. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Zhang Y, Zheng J and Pan J: Reactive oxygen species in cancer stem cells. Antioxid Redox Signal. 16:1215–1228. 2012. View Article : Google Scholar : PubMed/NCBI |