Antibody to human α-fetoprotein inhibits cell growth of human hepatocellular carcinoma cells by resuscitating the PTEN molecule: in vitro experiments
- Authors:
- Kiyoshi Ohkawa
- Tadashi Asakura
- Yutaka Tsukada
- Tomokazu Matsuura
-
Affiliations: Stable Isotope Medical Applications Laboratory, Research Center for Medical Science, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan, Radioisotope Research Facilities, Research Center for Medical Science, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan, Hachioji Laboratory, SRL Inc., Komiya-cho, Hachioji, Tokyo 192-8535, Japan, Department of Laboratory Medicine, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan - Published online on: May 3, 2017 https://doi.org/10.3892/ijo.2017.3982
- Pages: 2180-2190
This article is mentioned in:
Abstract
Mizejewski GJ and Allen RP: Immunotherapeutic suppression in transplantable solid tumours. Nature. 250:50–52. 1974. View Article : Google Scholar : PubMed/NCBI | |
Mizejewski GJ, Young SR and Allen RP: α fetoprotein: Effect of heterologous antiserum on hepatoma cells in vitro. J Natl Cancer Inst. 54:1361–1367. 1975. View Article : Google Scholar : PubMed/NCBI | |
Mizejewski GJ and Allen RP: α-fetoprotein: Studies of tumor-associated antigen cytotoxicity in mouse hepatoma BW7756. Clin Immunol Immunopathol. 11:307–317. 1978. View Article : Google Scholar : PubMed/NCBI | |
Mizejewski GJ and Dillon WR: Immunobiologic studies in hepatoma-bearing mice passively immunized to α-fetoprotein. Arch Immunol Ther Exp (Warsz). 27:655–662. 1979. | |
Tsukada Y, Mikuni M, Watabe H, Nishi S and Hirai H: Effect of anti-alpha-fetoprotein serum on some cultured tumor cells. Int J Cancer. 13:187–195. 1974. View Article : Google Scholar : PubMed/NCBI | |
Wepsic HT, Tsukada Y, Takeichi N, Nishi S and Hirai H: Effect of horse antibody to rat alpha-fetoprotein upon the growth of AH-66 in Donryu rats. Int J Cancer. 25:655–661. 1980. View Article : Google Scholar : PubMed/NCBI | |
Koji T, Ishii N, Munehisa T, Kusumoto Y, Nakamura S, Tamenishi A, Hara A, Kobayashi K, Tsukada Y, Nishi S, et al: Localization of radioiodinated antibody to alpha-fetoprotein in hepatoma transplanted in rats and a case report of alpha-fetoprotein antibody treatment of a hepatoma patient. Cancer Res. 40:3013–3015. 1980.PubMed/NCBI | |
Ohkawa K, Tsukada Y, Hibi N and Hirai H: The inhibitory effects of horse anti-rat AFP antiserum on the uptake of 2-deoxy-D-glucose by AFP-producing rat hepatoma cells. Int J Cancer. 33:497–502. 1984. View Article : Google Scholar : PubMed/NCBI | |
Tsukada Y, Bischof WK, Hibi N, Hirai H, Hurwitz E and Sela M: Effect of a conjugate of daunomycin and antibodies to rat alpha-fetoprotein on the growth of alpha-fetoprotein-producing tumor cells. Proc Natl Acad Sci USA. 79:621–625. 1982. View Article : Google Scholar : PubMed/NCBI | |
Tsukada Y, Kato Y, Umemoto N, Takeda Y, Hara T and Hirai H: An anti-alpha-fetoprotein antibody-daunorubicin conjugate with a novel poly-L-glutamic acid derivative as intermediate drug carrier. J Natl Cancer Inst. 73:721–729. 1984.PubMed/NCBI | |
Tsukada Y, Hurwitz E, Kashi R, Sela M, Hibi N, Hara A and Hirai H: Chemotherapy by intravenous administration of conjugates of daunomycin with monoclonal and conventional anti-rat alpha-fetoprotein antibodies. Proc Natl Acad Sci USA. 79:7896–7899. 1982. View Article : Google Scholar : PubMed/NCBI | |
Tsukada Y, Hurwitz E, Kashi R, Sela M, Hibi N, Hara A and Hirai H: Effect of a conjugate of daunomycin and purified polyclonal or monoclonal antibodies to rat alpha-fetoprotein on the growth of alpha-fetoprotein-producing tumor cells. Ann NY Acad Sci. 417:262–269. 1983. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Tsukada Y, Hara T and Hirai H: Enhanced antitumor activity of mitomycin C conjugated with anti-alpha-fetoprotein antibody by a novel method of conjugation. J Appl Biochem. 5:313–319. 1983.PubMed/NCBI | |
Tsukada Y, Ohkawa K and Hibi N: Suppression of human alpha-foetoprotein-producing hepatocellular carcinoma growth in nude mice by an anti alpha-foetoprotein antibody-daunorubicin conjugate with a poly-L-glutamic acid derivative as intermediate drug carrier. Br J Cancer. 52:111–116. 1985. View Article : Google Scholar : PubMed/NCBI | |
Ohkawa K, Hibi N and Tsukada Y: Evaluation of a conjugate of purified antibodies against human AFP-dextran-daunorubicin to human AFP-producing yolk sac tumor cell lines. Cancer Immunol Immunother. 22:81–86. 1986. View Article : Google Scholar : PubMed/NCBI | |
Tsukada Y, Ohkawa K and Hibi N: Therapeutic effect of treatment with polyclonal or monoclonal antibodies to alpha-fetoprotein that have been conjugated to daunomycin via a dextran bridge: Studies with an alpha-fetoprotein-producing rat hepatoma tumor model. Cancer Res. 47:4293–4295. 1987.PubMed/NCBI | |
Ohkawa K, Tsukada Y, Hibi N, Umemoto N and Hara T: Selective in vitro and in vivo growth inhibition against human yolk sac tumor cell lines by purified antibody against human alpha-fetoprotein conjugated with mitomycin C via human serum albumin. Cancer Immunol Immunother. 23:81–86. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kim EE, DeLand FH, Nelson MO, Bennett S, Simmons G, Alpert E and Goldenberg DM: Radioimmunodetection of cancer with radiolabeled antibodies to alpha-fetoprotein. Cancer Res. 40:3008–3012. 1980.PubMed/NCBI | |
Kim EE, Deland FH, Casper S, Corgan RL, Primus FJ and Goldenberg DM: Radioimmunodetection of colorectal cancer. Cancer. 45(Suppl): 1243–1247. 1980. View Article : Google Scholar : PubMed/NCBI | |
Uriel J, Villacampa MJ, Moro R, Naval J and Failly-Crépin C: Uptake of radiolabeled a-fetoprotein by mouse mammary carcinomas and its usefulness in tumor scintigraphy. Cancer Res. 44:5314–5319. 1984.PubMed/NCBI | |
Goldenberg DM: Cancer imaging with CEA antibodies: Historical and current perspectives. Int J Biol Markers. 7:183–188. 1992.PubMed/NCBI | |
Behr TM, Liersch T, Greiner-Bechert L, Griesinger F, Béhé M, Markus PM, Gratz S, Angerstein C, Brittinger G, Becker H, et al: Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer. 94(Suppl): 1373–1381. 2002. View Article : Google Scholar : PubMed/NCBI | |
Aarts F, Boerman OC, Sharkey RM, Hendriks T, Chang CH, McBride WJ, Bleichrodt RP, Oyen WJ and Goldenberg DM: Pretargeted radioimmunoscintigraphy in patients with primary colorectal cancer using a bispecific anticarcinoembryonic antigen CEA X anti-di-diethylenetriaminepentaacetic acid F(ab′)2 antibody. Cancer. 116(Suppl): 1111–1117. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mizejewski GJ: Biological role of alpha-fetoprotein in cancer: Prospects for anticancer therapy. Expert Rev Anticancer Ther. 2:709–735. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li MS, Li PF, Yang FY, He SP, Du GG and Li G: The intracellular mechanism of alpha-fetoprotein promoting the proliferation of NIH 3T3 cells. Cell Res. 12:151–156. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li MS, Li PF, He SP, Du GG and Li G: The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line. World J Gastroenterol. 8:469–475. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li P, Wang SS, Liu H, Li N, McNutt MA, Li G and Ding HG: Elevated serum alpha fetoprotein levels promote pathological progression of hepatocellular carcinoma. World J Gastroenterol. 17:4563–4571. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moro R, Gulyaeva-Tcherkassova J and Stieber P: Increased alpha-fetoprotein receptor in the serum of patients with early-stage breast cancer. Curr Oncol. 19:e1–e8. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Jiang W, Chen X, Zhang C, Li H, Hou W, Liu Z, McNutt MA, Lu F and Li G: Alpha-fetoprotein acts as a novel signal molecule and mediates transcription of Fn14 in human hepatocellular carcinoma. J Hepatol. 57:322–329. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Lin B, Zhou P and Li M: Molecular analysis of AFP and HSA interactions with PTEN potein. BioMed Res Int. 2015:2569162015. View Article : Google Scholar | |
Mizejewski GJ: Nonsecreted cytoplasmic alpha-fetoprotein: A newly discovered role in intracellular signaling and regulation. An update and commentary. Tumour Biol. 36:9857–9864. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li M, Li H, Li C, Wang S, Jiang W, Liu Z, Zhou S, Liu X, McNutt MA and Li G: Alpha-fetoprotein: A new member of intracellular signal molecules in regulation of the PI3K/AKT signaling in human hepatoma cell lines. Int J Cancer. 128:524–532. 2011. View Article : Google Scholar | |
Gao R, Cai C, Gan J, Yang X, Shuang Z, Liu M, Li S and Tang H: miR-1236 down-regulates alpha-fetoprotein, thus causing PTEN accumulation, which inhibits the PI3K/Akt pathway and malignant phenotype in hepatoma cells. Oncotarget. 6:6014–6028. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Guo J, Li W, Lu Y, Fu S, Xie X, Xia H, Dong X, Chen Y, Quan M, et al: Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells. Oncotarget. 6:12196–12208. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su R, Nan H, Guo H, Ruan Z, Jiang L, Song Y and Nan K: Associations of components of PTEN/AKT/mTOR pathway with cancer stem cell markers and prognostic value of these biomarkers in hepatocellular carcinoma. Hepatol Res. 46:1380–1391. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Guo J, Xia H, Li W, Lu Y, Dong X, Chen Y, Xie X, Fu S and Li M: Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells. Oncoscience. 2:59–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Shen Y, Sun H and Gao X: A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel. Tumour Biol. 37:10085–10096. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto M, Matsuura T, Aoki K, Maehashi H, Iwamoto T, Ohkawa K, Yoshida K, Yanaga K and Takada K: An efficient system for secretory production of fibrinogen using a hepatocellular carcinoma cell line. Hepatol Res. 45:315–325. 2015. View Article : Google Scholar | |
Nakabayashi H, Taketa K, Miyano K, Yamane T and Sato J: Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42:3858–3863. 1982.PubMed/NCBI | |
Ohkawa K, Tsukada Y, Murae M, Kimura E, Takada K, Abe T, Terashima Y and Mitani K: Serum levels and biochemical characteristics of human ovarian carcinoma-associated antigen defined by murine monoclonal antibody, CF511. Br J Cancer. 60:953–960. 1989. View Article : Google Scholar : PubMed/NCBI | |
Baumann H and Doyle D: Metabolic fate of cell surface glycoproteins during immunoglobulin-induced internalization. Cell. 21:897–907. 1980. View Article : Google Scholar : PubMed/NCBI | |
Press OW, Hansen JA, Farr A and Martin PJ: Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res. 48:2249–2257. 1988.PubMed/NCBI | |
Kyriakos RJ, Shih LB, Ong GL, Patel K, Goldenberg DM and Mattes MJ: The fate of antibodies bound to the surface of tumor cells in vitro. Cancer Res. 52:835–842. 1992.PubMed/NCBI | |
McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL and James LC: Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 14:327–336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Watkinson RE, McEwan WA and James LC: Intracellular antibody immunity. J Clin Immunol. 34(Suppl 1): S30–S34. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa M, Mukai Y, Okada Y, Tsumori Y, Tsunoda S, Tsutsumi Y, Aird WC, Yoshioka Y, Okada N, Doi T, et al: Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood. 121:2804–2813. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ha KD, Bidlingmaier SM, Su Y, Lee NK and Liu B: Identification of novel macropinocytosing human antibodies by phage display and high-content analysis. Methods Enzymol. 585:91–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miura K, Law SW, Nishi S and Tamaoki T: Isolation of alphafetoprotein messenger RNA from mouse yolk sac. J Biol Chem. 254:5515–5521. 1979.PubMed/NCBI | |
Zhou BP, Liao Y, Xia W, Spohn B, Lee MH and Hung MC: Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 3:245–252. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chung JH and Eng C: Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res. 65:8096–8100. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chung JH, Ginn-Pease ME and Eng C: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res. 65:4108–4116. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA and Eng C: The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet. 15:2553–2559. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gil A, Andrés-Pons A, Fernández E, Valiente M, Torres J, Cervera J and Pulido R: Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis: Involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. Mol Biol Cell. 17:4002–4013. 2006. View Article : Google Scholar : PubMed/NCBI | |
Al-Khouri AM, Ma Y, Togo SH, Williams S and Mustelin T: Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem. 280:35195–35202. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tamguney T and Stokoe D: New insights into PTEN. J Cell Sci. 120:4071–4079. 2007. View Article : Google Scholar : PubMed/NCBI | |
Georgescu MM, Kirsch KH, Akagi T, Shishido T and Hanafusa H: The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci USA. 96:10182–10187. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tolkacheva T and Chan AM: Inhibition of H-Ras transformation by the PTEN/MMAC1/TEP1 tumor suppressor gene. Oncogene. 19:680–689. 2000. View Article : Google Scholar : PubMed/NCBI | |
Maccario H, Perera NM, Davidson L, Downes CP and Leslie NR: PTEN is destabilized by phosphorylation on Thr366. Biochem J. 405:439–444. 2007. View Article : Google Scholar : PubMed/NCBI | |
Torres J and Pulido R: The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 276:993–998. 2001. View Article : Google Scholar | |
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S, Cognetti F, et al: PTEN: Multiple functions in human malignant tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI | |
Vazquez F, Ramaswamy S, Nakamura N and Sellers WR: Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 20:5010–5018. 2000. View Article : Google Scholar : PubMed/NCBI | |
Birle D, Bottini N, Williams S, Huynh H, deBelle I, Adamson E and Mustelin T: Negative feedback regulation of the tumor suppressor PTEN by phosphoinositide-induced serine phosphorylation. J Immunol. 169:286–291. 2002. View Article : Google Scholar : PubMed/NCBI | |
Okahara F, Ikawa H, Kanaho Y and Maehama T: Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J Biol Chem. 279:45300–45303. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okahara F, Itoh K, Nakagawara A, Murakami M, Kanaho Y and Maehama T: Critical role of PICT-1, a tumor suppressor candidate, in phosphatidylinositol 3,4,5-trisphosphate signals and tumorigenic transformation. Mol Biol Cell. 17:4888–4895. 2006. View Article : Google Scholar : PubMed/NCBI | |
Doble BW and Woodgett JR: GSK-3: Tricks of the trade for a multi-tasking kinase. J Cell Sci. 116:1175–1186. 2003. View Article : Google Scholar : PubMed/NCBI | |
Saini MK and Sanyal SN: PTEN regulates apoptotic cell death through PI3-K/Akt/GSK3p signaling pathway in DMH induced early colon carcinogenesis in rat. Exp Mol Pathol. 93:135–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tibarewal P, Zilidis G, Spinelli L, Schurch N, Maccario H, Gray A, Perera NM, Davidson L, Barton GJ and Leslie NR: PTEN protein phosphatase activity correlates with control of gene expression and invasion, a tumor-suppressing phenotype, but not with AKT activity. Sci Signal. 5:ra182012. View Article : Google Scholar : PubMed/NCBI | |
Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, et al: PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell. 3:117–130. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li AG, Piluso LG, Cai X, Wei G, Sellers WR and Liu X: Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell. 23:575–587. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hupp TR, Meek DW, Midgley CA and Lane DP: Regulation of the specific DNA binding function of p53. Cell. 71:875–886. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E and Xie D: Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry. 36:10117–10124. 1997. View Article : Google Scholar : PubMed/NCBI | |
Shieh SY, Taya Y and Prives C: DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18:1815–1823. 1999. View Article : Google Scholar : PubMed/NCBI | |
Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, et al: p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 102:849–862. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW: DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 287:1824–1827. 2000. View Article : Google Scholar : PubMed/NCBI | |
Haupt Y, Maya R, Kazaz A and Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 387:296–299. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mayo LD and Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 98:11598–11603. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhou BP, Liao Y, Xia W, Zou Y, Spohn B and Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 3:973–982. 2001. View Article : Google Scholar : PubMed/NCBI | |
Morani F, Phadngam S, Follo C, Titone R, Aimaretti G, Galetto A, Alabiso O and Isidoro C: PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in thyroid cancer cells. J Mol Endocrinol. 53:247–258. 2014. View Article : Google Scholar : PubMed/NCBI | |
Samih N, Hovsepian S, Aouani A, Lombardo D and Fayet G: Glut-1 translocation in FRTL-5 thyroid cells: Role of phosphatidylinositol 3-kinase and N-glycosylation. Endocrinology. 141:4146–4155. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hajduch E, Litherland GJ and Hundal HS: Protein kinase B (PKB/Akt) - a key regulator of glucose transport? FEBS Lett. 492:199–203. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ciampi R, Vivaldi A, Romei C, Del Guerra A, Salvadori P, Cosci B, Pinchera A and Elisei R: Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors. Mol Cell Endocrinol. 291:57–62. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang CH, Wey KC, Mo LR, Chang KK, Lin RC and Kuo JJ: Current trends and recent advances in diagnosis, therapy, and prevention of hepatocellular carcinoma. Asian Pac J Cancer Prev. 16:3595–3604. 2015. View Article : Google Scholar : PubMed/NCBI | |
Taketomi A: Clinical trials of antiangiogenic therapy for hepatocellular carcinoma. Int J Clin Oncol. 21:213–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dhir M, Melin AA, Douaiher J, Lin C, Zhen WK, Hussain SM, Geschwind JF, Doyle MB, Abou-Alfa GK and Are C: A review and update of treatment options and controversies in the management of hepatocellular carcinoma. Ann Surg. 263:1112–1125. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Wu L, Bai X, Xie Y, Wang A, Zhang H, Yang X, Wan X, Lu X, Sang X, et al: Combination treatment including targeted therapy for advanced hepatocellular carcinoma. Oncotarget. 7:71036–71051. 2016.PubMed/NCBI | |
Nakata K, Muro T, Furukawa R, Kono K, Kusumoto Y, Ishii N, Munehisa T, Koji T and Nagataki S: Presence of immunoglobulin G in human sera binding to alphafetoprotein. Oncodev Biol Med. 4:C101–C104. 1983.PubMed/NCBI | |
Asano T, Yamada N, Ochiai T, Sato H and Fukao T: Presence of anti-AFP-antibody producing B cells in peripheral blood lymphocyte of hepatocellular carcinoma patient. Nihon Shokakibyo Gakkai Zasshi. 81:2781984.In Japanese. | |
Sassi F, Ayed K, el Gaied A and Dellagi K: Presence of antialphafetoprotein immunoglobulin G in serum of a patient with hepatocellular carcinoma. Gastroenterol Clin Biol. 15:661–662. 1991.in French. | |
Liu H, Zhang J, Wang S, Pang Z, Wang Z, Zhou W and Wu M: Screening of autoantibodies as potential biomarkers for hepatocellular carcinoma by using T7 phase display system. Cancer Epidemiol. 36:82–88. 2012. View Article : Google Scholar | |
Negm OH, Hamed MR, Schoen RE, Whelan RL, Steele RJ, Scholefield J, Dilnot EM, Shantha Kumara HM, Robertson JF and Sewell HF: Human blood autoantibodies in the detection of colorectal cancer. PLoS One. 11:e01569712016. View Article : Google Scholar : PubMed/NCBI | |
Ura Y, Ochi Y, Hamazu M, Ishida M, Nakajima K and Watanabe T: Studies on circulating antibody against carcinoembryonic antigen (CEA) and CEA-like antigen in cancer patients. Cancer Lett. 25:283–295. 1985. View Article : Google Scholar : PubMed/NCBI | |
Konstadoulakis MM, Syrigos KN, Albanopoulos C, Mayers G and Golematis B: The presence of anti-carcinoembryonic antigen (CEA) antibodies in the sera of patients with gastrointestinal malignancies. J Clin Immunol. 14:310–313. 1994. View Article : Google Scholar : PubMed/NCBI | |
Haidopoulos D, Konstadoulakis MM, Antonakis PT, Alexiou DG, Manouras AM, Katsaragakis SM and Androulakis GF: Circulating anti-CEA antibodies in the sera of patients with breast cancer. Eur J Surg Oncol. 26:742–746. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ladd J, Lu H, Taylor AD, Goodell V, Disis ML and Jiang S: Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids Surf B Biointerfaces. 70:1–6. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Li W, Lu Y, Dong X, Lin B, Chen Y, Zhang X, Guo J and Li M: HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway. Int J Cancer. 140:1346–1355. 2017. View Article : Google Scholar |